• Title/Summary/Keyword: Solution Process

Search Result 7,467, Processing Time 0.034 seconds

Mechanical Properties of TiAlSiN films Coated by Hybrid Process (하이브리드 공정으로 제조한 TiAlSiN 박막의 특성)

  • Song, Min-A;Yang, Ji-Hoon;Jung, Jae-Hun;Kim, Sung-Hwan;Jeong, Jae-In
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.4
    • /
    • pp.174-180
    • /
    • 2014
  • In this study, TiAlSiN coatings have been successfully synthesized on stainless steel and tungsten carbide substrate by a hybrid coating method employing a cathodic arc and a magnetron sputtering source. TiAl and Si target were vaporized with the cathodic arc source and the magnetron sputtering source, respectively. Process gas was the mixture of nitrogen and argon gas. With the increase of Si content, the crystallinity and the grain size of TiAlSiN film was decreased. At the Si content of more than 8 at.%, grain size of TiAlSiN was saturated at around 2 nm. The hardness value of the TiAlSiN film increased with incorporation of Si, and had the maximum value of ~ 3,233 Hv at the Si content of 9.2 at.%. The oxidation resistance of TiAlSiN film was enhanced with the increase of Si content.

Liquid Crystal Alignment on Multi-stacked Layer HfO2 Thin Films Using a Solution-process (용액 공정 기반의 다중 적층된 HfO2 박막 상에서의 액정 배향)

  • Kim, Dai-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.11
    • /
    • pp.821-825
    • /
    • 2013
  • Effect of multi-stacked layer (MSL), 0.1 mol (M) and 0.3 mol (M) hafnium oxide ($HfO_2$) alignment layers were fabricated via a solution-process for LCs orientation. The solutions were spin-coated and annealed in a furnace. MSL consists of three sub-layers using 0.1 M solution, mono-layer (ML) is composed of 0.3 M $HfO_2$ solution. Then ion-beam irradiation was treated with 1.8 keV for 2 min. $HfO_2$-based LC cells were investigated through photographs, pre-tilt angle using crystal rotation method, X-ray photoelectron spectroscopy (XPS) measurement, and surface roughness using atomic force microscopy(AFM) for their characteristic research. Good LC orientation characteristics were observed on MSL $HfO_2$ surface. The LC alignment mechanism on MSL $HfO_2$ and ML $HfO_2$ surfaces was attributed to van der Waals (VDW) interaction between the LC molecular and substrate surface.

Effect of Preparation Condition of Precursor Thin Films on the Properties of CZTS Solar Cells

  • Seong, Si-Jun;Park, Si-Nae;Kim, Dae-Hwan;Gang, Jin-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.318.1-318.1
    • /
    • 2013
  • Nowadays Cu2ZnSnS4 (CZTS) solar cell is attracting a lot of attention as a strong alternative to CIGS solar cell due to nontoxic and inexpensive constituent elements of CZTS. From various processes for the fabrication of CZTS solar cell, solution-based deposition of CZTS thin films is well-known non-vacuum process and many researchers are focusing on this method because of large-area deposition, high-throughput, and efficient material usage. Typically the solution-based process consists of two steps, coating of precursor solution and annealing of the precursor thin films. Unlike vacuum-based deposition, precursor solution contains unnecessary elements except Cu, Zn, Sn, and S in order to form high quality precursor thin films, and thus the precise control of precursor thin film preparation is essential for achieving high efficient CZTS solar cells. In this work, we have investigated the effect of preparation condition of CZTS precursor thin films on the performance of CZTS solar cells. The composition of CZTS precursor solution was controlled for obtaining optimized chemical composition of CZTS absorber layers for high-efficiency solar cells. Pre-annealing process of the CZTS precursor thin films was also investigated to confirm the effect of thermal treatment on chemical composition and carbon residues of CZTS absorber layers. The change of the morphology of CZTS precursor thin film by the preparation condition was also observed.

  • PDF

Preparation of high-performance nanofiltration membrane with antioxidant properties

  • Yu, Feiyue;Zhang, Qinglei;Pei, Zhiqiang;Li, Xi;Yang, Xuexuan;Lu, Yanbin
    • Membrane and Water Treatment
    • /
    • v.13 no.4
    • /
    • pp.191-199
    • /
    • 2022
  • In industrial production, the development of traditional polyamide nanofiltration (NF) membrane was limited due to its poor oxidation resistance, complex preparation process and high cost. In this study, a composite NF membrane with high flux, high separation performance, high oxidation resistance and simple process preparation was prepared by the method of dilute solution dip coating. And the sulfonated polysulfone was used for dip coating. The results indicated that the concentration of glycerin, the pore size of the based membrane, the composition of the coating solution, and the post-treatment process had important effects on the structure and performance of the composite NF membrane. The composite NF membrane prepared without glycerol protecting based membrane had a low flux, when the concentration of glycerin increased from 5% to 15%, the pure water flux of the composite NF membrane increased from 46.4 LMH to 108.2 LMH, and the salt rejection rate did not change much. By optimizing the coating system, the rejection rate of Na2SO4 and PEG1000 was higher than 90%, the pure water flux was higher than 40 LMH (60psi), and it can withstand 20,000 ppm.h NaClO solution cleaning. When the post treatment processes was adjusted, the salt rejection rate of NaCl solution (250 ppm) reached 45.5%, and the flux reached 62.2 LMH.

Synthesis of F-free Y & Cu precursor solution and optimization of annealing process (Sm 첨가 F-free Y & Cu 전구용액의 합성 및 열처리 공정의 최적화)

  • Kim, Young-Kuk;Yoo, Jai-Moo;Chung, Kook-Chae;Ko, Jae-Woong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.1
    • /
    • pp.1-4
    • /
    • 2007
  • The total Fluorine content in the precursor solution for MOD processing of YBCO coated conductors can be significantly reduced by synthesizing precursor solution with F-free Y & Cu precursor and Barium trifluoroacetate(TFA). It was shown that crack-free and uniform precursor films were formed after calcinations in humidified oxygen atmosphere. Less than 2 hours are required to finish the calcinations process and XRD measurement shows that $BaF_2,\;CuO,\;Y_2O_3$ are major constituent of calcined precursor films. Film thickness after calcinations was improved to be 2.8um by applying slot-die coating method. In particular, addition of Samarium shows critical current of $I_c=273A/cm-w(J_c=3.8MA/cm^2)$. It is shown that uniform and fast processing route to YBCO coated conductor with high Ic can be provided by employing F-free Y & Cu precursor solution in MOD process.

The Effect of Solution Agitation on the Electroless Cu Deposition Within Nano-patterns (용액 교반이 미세 패턴 내 무전해 구리 도금에 미치는 영향)

  • Lee, Joo-Yul;Kim, Man;Kim, Deok-Jin
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.1
    • /
    • pp.23-27
    • /
    • 2008
  • The effect of solution agitation on the copper electroless deposition process of ULSI (ultra large scale integration) interconnections was investigated by using physical, electrochemical and electrical techniques. It was found that proper solution agitation was effective to obtain superconformal copper configuration within the trenches of $130{\sim}80nm$ width. The transition of open potential during electroless deposition process showed that solution agitation induced compact structure of copper deposits by suppressing mass transfer of cuprous ions toward substrate. Also, the specific resistivity of copper layers was lowered by increasing agitation speed, which made the deposited copper particles smaller. Considering both copper deposit configuration and electric property, around 500 rpm of solution agitation was the most suitable for the homogeneous electroless copper filling within the ultra-fine patterns.

Mass Transfer in an Adiabatic Rectifier of Ammonia-Water Absorption System

  • Kim, Byong-Joo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.8 no.2
    • /
    • pp.69-79
    • /
    • 2000
  • Falling film rectification involves simultaneous heat and mass transfer between vapor and solution film. In the present work, the adiabatic rectification process of ammonia-water vapor by the falling solution film on the vertical plate was investigated. The continuity momentum, energy and diffusion equations for the solution film and the vapor mixture were formulated in integral forms and solved numerically, The model could predict the film thickness, the pressure gradient, and the mass transfer rate. The effects of Reynolds number and ammonia concentration of solution and vapor mixture, rectifier length, and the enhancement of mass transfer coefficient in each phases were investigated. The stripping of water in vapor mixture occurred near the entrance of ammonia solution, which imposed the proper size of an adiabatic rectifier. Rectifier efficiency increased as film Reynolds number increased and as vapor mixture Reynolds number decreased. The improvement of rectifier efficiency was significant with the enhancement of mass transfer coefficient in falling film.

  • PDF

Recovery of Pure Alumina Powder from the Wasted Aluminum Etching Solution by Precipitation Method (알루미늄 에칭폐액으로부터 침전법에 의한 순수 알루미나분말의 회수)

  • 김기호;강병철
    • Journal of the Korean institute of surface engineering
    • /
    • v.25 no.3
    • /
    • pp.150-157
    • /
    • 1992
  • A recovery process of pure alumina powder from the wasted aluminum etching solution of electrolytic condenser works was studied. The possibility of this process was considered in the basis of thermodynamic data nad physico-chemical properties for the recovered materials were tested. In order to obtain pure alumina, Fe3+ and Cu2+ in the solution as impurities were solvent-extracted, respectively, and then, Al3+ was precipitated by changing the pH of the solution. As the results, more than 99.9% of Al3+ in the solution was recovered by the precipitation method. The weight of the precipitate was reduced to about 65 wt.% of the original one by calcination and the sizes of the recovered powders were in order of 3-5$\mu\textrm{m}$. The precipitates were transformed to $\alpha$-Al2O3 at the calcination temperature about 120$0^{\circ}C$.

  • PDF

The Optimum Condition Analysis of Vanadium Solvent Extraction by Alamine336 from the Synthetic Vanadium Sulfate Solution. (황산바나듐 모의용액으로부터 Alamine336에 의한 바나듐 용매추출의 최적조건 연구)

  • Ahn, Jong-Gwan;Ahn, Jae-Woo
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.12
    • /
    • pp.823-829
    • /
    • 2008
  • The solvent extraction process for the recovery of vanadium from leaching solution of SCR(selective catalytic reduction) spent catalyst was investigated by using Alamine336 as an extractant. The effects of experimental conditions, such as initial pH and concentration of sulfate ion, and ammonia concentration of stripping solution were studied. The extraction percentage of vanadium were increased with the increase of initial pH of leaching solution and decreased with the increase of sulfate ion. More than 99% of vanadium in leaching solution were extracted and stripped at the A/O ratio of 1.0 in 2 stages. On the basis of these results, an optimum solvent extraction process which vanadium was effectively recovered from SCR spent catalyst was proposed.

Dissolution Characteristics of Copper Oxide in Gas-liquid Hybrid Atmospheric Pressure Plasma Reactor Using Organic Acid Solution

  • Kwon, Heoung Su;Lee, Won Gyu
    • Applied Chemistry for Engineering
    • /
    • v.33 no.2
    • /
    • pp.229-233
    • /
    • 2022
  • In this study, a gas-liquid hybrid atmospheric pressure plasma reactor of the dielectric barrier discharge method was fabricated and characterized. The solubility of copper oxide in the organic acid solution was increased when argon having a larger atomic weight than helium was used during plasma discharge. There was no significant effect of mixing organic acid solutions under plasma discharge treatment on the variation of copper oxide's solubility. As the applied voltage for plasma discharge and the concentration of the organic acid solution increased, the dissolution and removal power of the copper oxide layer increased. Solubility of copper oxide was more affected by the concentration in organic acid solution rather than the variation of plasma applied voltage. The usefulness of hybrid plasma reactor for the surface cleaning process was confirmed.