• Title/Summary/Keyword: Solute Transport

Search Result 164, Processing Time 0.028 seconds

Asymptotic Expressions for One Dimensional Model of Hemodiafiltration

  • Chang, Ho-Nam;Park, Joong-Kon
    • Journal of Biomedical Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.9-14
    • /
    • 1984
  • The asymptotic solution using the Tailor series has been given explicit form for the solute concentration and overall solute removal in hemodiafilter using one dimensional model. The numerical solutions have been calculated within 0.001% error by the Romberg integration method. Compared with the numerical solutions, the oneterm asymptotic solutions were found to be within 3% error for the condition > 3.0 and three-terms asymtotic solutions were required for the condition >0.7 where denotes measure of convection over diffusional transport and a the ratio of blood flow rate over dialysate flow rate.

  • PDF

Analysis of Hydrodynamic Dispersion in Contaminated Soil based on Mobile-Immobile Model (Mobile-Immobile 모델을 활용한 유류오염토양 내 수리분산 특성 연구)

  • Kim, Yong-Sung;Woo, Hee-Soo;Park, Jun-Boum
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1512-1517
    • /
    • 2008
  • Laboratory column tests were conducted in this study using $Cl^-$ tracers on Jumunjin sand to analyze contaminant transport in mixed contaminated soils. Results obtained from clean soils and soils containing residual diesel verified heterogeneous distribution of residual diesel, and clear acceleration of solute movement. In addition, asymmetric breakthrough curves indicated development of immobile region where solute movement becomes stagnant and creates tailing phenomenon.

  • PDF

Effect of Intersecting Angles of Rock Fractures on Solute Mixing at Fracture Junction (암반단열의 교차각이 교차점에서의 용질의 혼합에 미치는 영향)

  • Kim, Dahye;Yeo, In Wook
    • Economic and Environmental Geology
    • /
    • v.54 no.4
    • /
    • pp.465-473
    • /
    • 2021
  • This numerical study aims at analyzing the effect of flow characteristics, caused by geometrical features such as intersecting angles, on solute mixing at fracture junctions. It showed that not only Pe, the ratio of advection to diffusion, but also the intersecting angles played an important role in solute mixing at the junction. For the intersection angles less than 90°, the fluid flowed to the outlet in the same direction as the injected flow direction, which increased the contact at the junction with the streamlines coming from the different inlets. On the other hand, for the intersecting angles greater than 90°, the fluid flowed out to the outlet opposite to the flow direction in the inlet, leading to minimizing the contact at the junction. Therefore, in the former case, solute mixing occurred even at high Pe, and in the latter case, solutes transport along the streamlines even at low Pe. For Pe < 1, the complete mixing model was known to occur, but for the intersecting angle greater than 150°, no complete solute mixing occurred. Overall, the transition from the complete mixing model to the streamline-routing model occurred for Pe = 0.1 - 100, but it highly depended on the intersecting angles. Specifically, the transition occurred at Pe = 0.1 - 10 for intersecting angles ≧ 150° and at Pe = 10 - 100 for intersecting angles ≦ 30°. For Pe > 100, the streamline-routing model was dominant regardless of intersecting angles. For Pe > 1,000, the complete streamline-routing model appeared only for the intersecting angles greater than 150°. For the intersecting angles less than 150°, the streamline-routing model dominated over the complete solute mixing, but solute mixing still occurred at the fracture junction.

A Numerical Study on Spatial Behavior of Linear Absorbing Solute in Heterogeneous Porous Media (비균질 다공성 매질에서 선형 흡착 용질의 공간적 거동에 대한 수치적 연구)

  • Jeong, Woo Chang;Lee, Chi Hun;Song, Jai Woo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.3
    • /
    • pp.79-88
    • /
    • 2003
  • This paper presents a numerical study of the spatial behavior of a linear absorbing solute in a heterogeneous porous medium. The spatially correlated log-normal hydraulic conductivity field is generated in a given two-dimensional domain by using the geostatistical method (Turning Bands algorithm). The velocity vector field is calculated by applying the two-dimensional saturated groundwater flow equation to the Galerkin finite element method. The simulation of solute transport is carried out by using the random walk particle tracking model with CD(constant displacement) scheme in which the time interval is automatically adjusted. In this study, the spatial behavior of a solute is analyzed by the longitudinal center-of-mass displacement, longitudinal spatial spread moment and longitudinal plume skewness.

  • PDF

Development of Transport Parameters affecting on the Removal of Micro Organic Compounds such as Disinfection By-Products and Pharmaceutically Active Compounds by Low-Pressure Nanofiltration

  • Oh, Jeong-Ik;Yamamoto, Kazuo
    • Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.126-133
    • /
    • 2009
  • This study investigated the removal characteristics of various micro organic compounds by low-pressure nanofiltration membranes comprised of disinfection by products and pharmaceutically active compounds. The experimental removal of micro organic compounds by low-pressure nanofiltration membranes was compared with the transport model calculations, which consist of diffusion and convection terms including steric hindrance factor. The selected molecule from the disinfection byproducts and pharmaceutical active compounds showed a much lower removal than polysac-charides with a similar molecular size. However,the difference between model calculation and experimental removal of disinfection by-products and pharmaceutically active compounds could be corrected. The correlation of Ks with solute radius was further considered to clarity transport phenomena of micro organic solutes through nanofiltration membranes.

A TWO-DIMENSIONAL FINITE VOLUME METHOD FOR TRANSIENT SIMULATION OF TIME- AND SCALE-DEPENDENT TRANSPORT IN HETEROGENEOUS AQUIFER SYSTEMS

  • Liu, F.;Turner, I.;Ahn, V.;Su, N.
    • Journal of applied mathematics & informatics
    • /
    • v.11 no.1_2
    • /
    • pp.215-241
    • /
    • 2003
  • In this paper, solute transport in heterogeneous aquifers using a modified Fokker-Planck equation (MFPE) is investigated. This newly developed mathematical model is characterised with a time-, scale-dependent dispersivity. A two-dimensional finite volume quadrilateral mesh method (FVQMM) based on a quadrilateral background interpolation mesh is developed for analysing the model. The FVQMM transforms the coupled non-linear partial differential equations into a system of differential equations, which is solved using backward differentiation formulae of order one through five in order to advance the solution in time. Three examples are presented to demonstrate the model verification and utility. Henry's classic benchmark problem is used to show that the MFPE captures significant features of transport phenomena in heterogeneous porous media including enhanced transport of salt in the upper layer due to its parameters that represent the dependence of transport processes on scale and time. The time and scale effects are investigated. Numerical results are compared with published results on the some problems.

Study on Characteristice of Transient Soulte Transport in the Vadose Zone by Using TDR: (1) Relationship between Water Content and Realtive Electrical Conductivity (TDR(Time Domain Reflectometry)를 이용한 비포화 토양에서 천이상태의 오염원 이송확산 특성에 관한 연구 : (1) 함수량과 상대전기전도도의 관계)

  • Park, Jae-Hyeon;Seo, Il-Won
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.6
    • /
    • pp.741-749
    • /
    • 1999
  • This study is to develop a method of measuring the soil water concentration by using TDR, which is based on the relationships between the bulk soil electrical conductivity of soil and the reflected wave of TDR. The proposed monitoring method is combined with two important relationships. One is that between the bulk soil electrical conductivity and the solute concentration, which is known to be linear at a constant volumetric soil water content and the other is that between the relative bulk soil electrical conductivity and the water content at a constant concentration. Some formulas have been proposed to solve the second relationship, but a new formula and the critical water content are proposed to improve the accuracy of measurement. This proposed formula estimates the relative bulk soil electrical conductivity for water contents which is divided to two regions, linear and nonlinear, by the critical water content. As the result of the comparison with other formulas, the proposed formula is proved to be superior to other formulas and to be an available method to apply to the unsaturated transient solute transport.

  • PDF

The Transport Phenomena of a Series of Amides through the Copolymer Hydrogel Membranes

  • Koo, Hyeon-Sook;Jhon, Mu-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.1 no.4
    • /
    • pp.138-143
    • /
    • 1980
  • Hydrogel membranes were prepared by copolymerizing 2-hydroxyethyl methacrylate (HEMA) and N-vinyl-2-pyrrolidone (VP) in the presence of the solvent and the crosslinker tetraethyleneglycol dimethacrylate (TEGDMA). By changing the monomer composition and the crosslinker content, different membranes were synthesized. Using these membranes, relative permeabilities and distribution coefficients for amides including urea were measured. The water contents in membrane were also measured. On the basis of solute-membrane matrix interaction, the results were interpreted.

Dynamics and Transport of Molecules Studied by Transient Grating Method : Methyl Red in Solution

  • 김선희;김성규
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.4
    • /
    • pp.365-373
    • /
    • 1996
  • Time profile of the transient grating signal induced by a nanosecond pulsed laser excitation of methyl red is investigated in alcohols and toluene at several solvent temperatures. The signal decays biexponentially with well-separated time constants; the faster decay is identified as due to thermal diffusion of the solvents and the slower one as mainly due to translational diffusion of the solute. The measured translational diffusion constants of methyl red in toluene are close to a hydrodynamic prediction with a slip boundary condition while those in alcohols are larger by 30% and increase slightly with the size of alcohols. We compare the results with modified hydrodynamic models.