• Title/Summary/Keyword: Solute

Search Result 686, Processing Time 0.023 seconds

The Effects of the Distribution Aspect of Precipitate on the Corrosion Behavior of As-Cast Magnesium Alloys

  • 이충도
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.295-295
    • /
    • 1999
  • In the present study, the corrosion behavior of AZ91D as-cast alloy was investigated form the viewpoint of the distribution aspect of precipitate ($Mg_{17}Al_{12}$) and the variation of Al concentration in the Mg-rich matrix. The dendrite arm spacing (DAS) of an as-cast specimen was measured as a function of degree which describes the distribution aspect of the precipitate, and the salt spray test was conducted for various grain-sired specimens fur 20 days. The dendrite arm spacing increased as the grain size increased to about 150㎛, but a constant value is indicated when the grain size exceeds that range. Although the relationship between the corrosion rate and grain size is of a nonlinear type, the linear trend between the corrosion rate and the dendrite arm spacing is maintained for the overall range of dendrite arm spacing. Since the precipitate in the as-cast alloy is discontinuously distributed, this linear relationship means that the variation of Al-solute concentration in the Mg-rich matrix has a more potent effect than the protective action of the precipitate on the corrosion behavior of an as-cast alloy.

Removal Mechanisms of BTEX Compounds by RO/NF Membrane Processes (RO/NF막 공정을 이용한 BTEX 물질의 제어 특성 평가)

  • Jang, Hyuewon;Park, Chanhyuk;Hong, Seungkwan;Yoon, Yeomin;Jung, Jin-Young;Chung, Yun-Chul
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.926-932
    • /
    • 2006
  • A series of bench-scale membrane filtration experiments were performed to systematically investigate the removal mechanisms of reverse osmosis (RO) and nanofiltration (NF) membranes for BTEX (benzene, toluene, ethylene, xylene), trichloroethylene (TCE) and tetrachloroethylene (PCE). The molecular weight of these organic compounds ranged from 78 to 166 dalton. The rejection of organic compounds by RO/NF membranes varied significantly from 59.6 to 99.2% depending on solute and membrane types. Specifically, experimental results demonstrated that the removal efficiency of RO/NF membranes increased as solute molecular characteristics such as W/L (molecular width/length) ${\times}$ $M_W$ (molecular weight) and octanol-water partition coefficient increased. This observation suggested that the rejection of small organic compounds by RO/NF membranes was determined by the combined effect of physical (molecular size and shape) and chemical (hydrophobicity) properties.

Soret effect on the convective instability in binary nanofluids (Soret 효과를 고려한 이성분 나노유체에서의 대류 불안정성 해석)

  • Kim Jake;Jung Chung Woo;Kang Yong Tae;Choi Chang Kyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.3
    • /
    • pp.256-261
    • /
    • 2005
  • The objective of the present study is to study the Soret effect of both nanoparticles and solute on the convective instabilities in binary nanofluids. A new stability criterion is obtained based on the linear stability theory. The results show that the Soret effect of solute(${\psi}_{bf}$) makes the binary nanofluids unstable significantly and the convective motion in a binary nanofluid sets in easily as the ratio of Soret coefficient of nanofluid to that of binary basefluid ${\delta}_4$ increases for ${\delta}_4$ > -1. It is also found that as an increase of the volume fraction of nanoparticles, nanofluid becomes stable but at a separation ratio of ${\psi}=-0.3$ the state of fluid changes from stable to unstable.

The Influence of Dielectric Constant on Ionic and Non-polar Interactions

  • Hwang, Kae-Jung;Nam, Ky-Youb;Kim, Jung-Sup;Cho, Kwang-Hwi;Kong, Seong-Gon;No, Kyoung-Tai
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.1
    • /
    • pp.55-59
    • /
    • 2003
  • This work is focused on analyzing ion-pair interactions and showing the effect of solvent induced inter-atomic attractions in various dielectric environments. To estimate the stability of ion-pairs, SCI-PCM ab initio MO calculations were carried out. We show that the solvent-induced attraction or ‘cavitation' energy of the ion-pair interactions in solution that arises mainly from the stabilization of the water molecules by the generation of an electrostatic field. In fact, even the strong electrostatic interaction characteristic of ion-pair interactions in the gas phase cannot overcome the destabilization or reorganization of the water molecules around solute cavities that arise from cancellation of the electrostatic field. The solvent environment, possibly supplemented by some specific solvent molecules, may help place the solute molecule in a cavity whose surroundings are characterized by an infinite polarizable dielectric medium. This behavior suggests that hydrophobic residues at a protein surface could easily contact the side chains of other nearby residues through the solvent environment, instead of by direct intra-molecular interactions.

Nucleation and growth of vacancy agglomeration in CZ silicon crystals

  • Ogawa, Tomoya;Ma, Minya
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.3
    • /
    • pp.286-288
    • /
    • 1999
  • When concentration of vacancies in a CZ silicon crystal is defined by molar fraction $X_{B}$, the degree for supersaturation $\sigma$ is given by $[X_{B}-X_{BS}]/X_{BS}=X_{B}/X_{BS}-1=ln(X_{B}/X_{BS})$ because $X_{B}/X_{BS}$ is nearly equal to unity. Here, $X_{BS}$ is the saturated concentration of vacancies in a silicon crystal and $X_{B}$ is a little larger than $X_{BS}$. According to Bragg-Williams approximation, the chemical potential of the vacancies in the crystal is given by ${\mu}_{B}={\mu}^{0}+RT$ ln $X_{B}+RT$ ln ${\gamma}$, where R is the gas constant, T is temperature, ${\mu}^{0}$ is an ideal chemical potential of the vacancies and ${\gamma}$ is and adjustable parameter similar to the activity of solute in a solute in a solution. Thus, ${\sigma}(T)$ is equal to $({\mu}_{B}-{\mu}_{BS})/RT$. Driving force of nucleation for the vacancy agglomeration will be proportional to the chemical potentialdifference $({\mu}_{B}-{\mu}_{BS})/RT$ or ${\sigma}(T)$, while growth of the vacancy agglomeration is proportaional to diffusion of the vacancies and grad ${\mu}_{B}$.

  • PDF

Separation of Heavy Metal Ions across Novel Mosaic Membrane (하전모자이크 막을 사용하여 중금속이온의 분리)

  • Song, Myung-Kwan;Lee, Jang-Oo;Yang, Wong-Kang
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2005.11a
    • /
    • pp.96-101
    • /
    • 2005
  • A theory for the material transports through ion exchange membrane has been developed on the basis of nonequilibrium thermodynamics by removing the assumption of solvent flow in the previous paper and applied to a detailed study of the ionic transport properties of new charged mosaic membrane(CMM) system. The CMM having two different fixed charges in the polymer membrane indicated unique selective transport behavior then ion-exchange membrane. The separation behavior of ion transport across the CMM with a parallel array of positive and negative functional charges were investigated. It was well-known the analysis of the volume flux and solute flux based on nonequilibrium thermodynamics. Our suggests preferential salt transport across the charged mosaic membranes. Transport properties of heavy metal ions, $Mg^{2+}$, $Mn^{2+}$and sucrose system across the charged mosaic membrane were estimated. As a result, we were known metal salts transport depended largely on the CMM. The reflection coefficient indicated the negative value that suggested preferential material transport and was independent of charged mosaic membrane thickness.

  • PDF

Evaluation of interaction between organic solutes and a membrane polymer by an inverse HPLC method

  • Kiso, Yoshiaki;Hosogi, Katsuya;Kamimoto, Yuki;Jung, Yong-Jun
    • Membrane and Water Treatment
    • /
    • v.5 no.3
    • /
    • pp.171-182
    • /
    • 2014
  • Organic compounds are adsorbed on RO/NF membranes, and the adsorption may influence the rejection of organic compounds by the membranes. Because almost RO/NF membranes are composite membranes, the results obtained by adsorption experiment with using membrane pieces are unable to avoid the influence by the support membrane. In this work, the interaction between membrane polymer and organic solutes was examined by an inverse HPLC methodology. Poly (m-phenylenetrimesoylate), the constituent of skin layer of RO/NF membranes, was coated on silica gel particles and used as a stationary phase for HPLC. When water was used as a mobile phase, almost hydrophilic aliphatic compounds were not effectively adsorbed on the stationary phase, although hydrophobic compounds were slightly adsorbed. The results indicated that the hydrophilic aliphatic compounds are useful probe solutes to examine the molecular sieving effect of a membrane. When water was used as a mobile phase, the aromatic compounds were strongly retained, and therefore $CH_3CN/H_2O$ (30/70) was used as a mobile phase. It was revealed that the adsorption of aromatic compounds was controlled by stacking between solute and polymer and was hindered by non-planar structure and substituents.

Chromatographic Selectivity of Cyano-Bonded Silica Columns in RPLC Based on the Linear Solvation Energy Relationships

  • Park, Jung-Hag;Jang, Myung-Duk;Kwon, Se-Mok
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.1
    • /
    • pp.75-79
    • /
    • 1992
  • Differences in chromatographic properties in RPLC of four brands of cyano bonded silica stationary phases are rationalized in terms of the type and relative strength of the solute-stationary phase interactions, which can be readily inferred from multiple linear regression analyses of retention data for a set of standard compounds on the stationary phases under study based on the linear solvation energy relationships (LSERs). Although four brands of cyano bonded columns studied (CPS-Hypersil, Ultrasphere cyano, Spherisorb-CN and ${\mu}$-Bondapak-CN) have similar bonding density and have been prepared from monofunctional cyanopropylsilane reagents, they possess quite different, relative hydrogen bonding (HB) donor and acceptor strengths. Comparison of the retention behavior on a cyano-bonded silica column with that on an ODS column shows that there are significant differences in the strength of HB interactions between the solute and the stationary phase on the two columns with different functionalities. Information on the differences in the interaction characteristics among brands of the cyano-bonded silica columns and between the ODS and cyano-bonded columns can be utilized to optimize the selectivity for a given separation on these columns.

Effect of Fine Copper Sulfides on the High Cycle Fatigue Properties of Bake Hardening Steels for Automotive (자동차용 소부경화형(BH) 강의 고주기 피로 특성에 미치는 미세 황화물의 영향)

  • Kang, Seonggeu;Kim, Jinyong;Choi, Ildong;Lee, Sungbok;Hong, Moonhi
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.3
    • /
    • pp.203-210
    • /
    • 2011
  • Bake hardening steels have to resist strain aging to prevent the yield strength increment and stretcher strain during press process and to enhance the bake hardenability during baking process after painting. The bake hardening steels need to control the solute carbon and the solute nitrogen to improve the bake hardenability. Ti and/or Nb alloying for nitride and carbide precipitation and low carbon content below 0.003% are used to solve strain aging and formability problem for automotive materials. However, in the present study, the effect of micro-precipitation of copper sulfide on the bake hardenability and fatigue properties of extremely low carbon steel has been investigated. The bake hardenability of Cu-alloyed bake hardening (Cu-BH) steel was slightly higher (5 MPa) than that of Nb-alloyed bake hardening (Nb-BH) steel, but the fatigue limit of Cu-BH steel was far higher (45 MPa) than that of Nb-BH steel. All samples showed the ductile fracture behavior and some samples revealed distinct fatigue stages, such as crack initiation, stable crack growth and unstable crack growth.

Distribution of Zirconium Between Salt And Bismuth During A Separation From Rare Earth Elements By A Reductive Extraction

  • S. W. Kwon;Lee, B. J.;B. G. Ahn;Kim, E. H.;J. H. Yoo
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.02a
    • /
    • pp.165-169
    • /
    • 2004
  • It was studied on the reductive extraction between the eutectic salt and Bi metal phases. The solutes were zirconium and the rare earth elements, where zirconium was used as the surrogate for the transuranic(TRU) elements. All the experiments were performed in a glove box filled with argon gas. Two types of experimental conditions were used -high and low initial solute concentrations in salt. Li-Bi alloy was used as a reducing agent to reduce the high chemical activity of Li. The reductive extraction characteristics were examined using ICP, XRD and EPMA analysis. Zirconium was successfully separated from the rare earth elements by the reductive extraction method. The LiF-NaF-KF system was favorable among the fluoride salt systems, whereas the LiCl-KCl system was favorable among the chloride salt systems. When the solute concentrations were high, intermetallic compounds were found near the salt-metal interface.

  • PDF