• Title/Summary/Keyword: Soluble-boron-free

Search Result 19, Processing Time 0.021 seconds

Reactivity balance for a soluble boron-free small modular reactor

  • van der Merwe, Lezani;Hah, Chang Joo
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.648-653
    • /
    • 2018
  • Elimination of soluble boron from reactor design eliminates boron-induced reactivity accidents and leads to a more negative moderator temperature coefficient. However, a large negative moderator temperature coefficient can lead to large reactivity feedback that could allow the reactor to return to power when it cools down from hot full power to cold zero power. In soluble boron-free small modular reactor (SMR) design, only control rods are available to control such rapid core transient. The purpose of this study is to investigate whether an SMR would have enough control rod worth to compensate for large reactivity feedback. The investigation begins with classification of reactivity and completes an analysis of the reactivity balance in each reactor state for the SMR model. The control rod worth requirement obtained from the reactivity balance is a minimum control rod worth to maintain the reactor critical during the whole cycle. The minimum available rod worth must be larger than the control rod worth requirement to manipulate the reactor safely in each reactor state. It is found that the SMR does have enough control rod worth available during rapid transient to maintain the SMR at subcritical below k-effectives of 0.99 for both hot zero power and cold zero power.

Design optimization of cylindrical burnable absorber inserted into annular fuel pellets for soluble-boron-free SMR

  • Jo, YuGwon;Shin, Ho Cheol
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1464-1470
    • /
    • 2022
  • This paper presents a high performance burnable absorber named as CIMBA (Cylindrically Inserted and Mechanically Separated Burnable Absorber) for the soluble-boron-free SMR. The CIMBA is the cylindrical gadolinia inserted into the annular fuel pellets. Although the CIMBA utilizes the spatial self-shielding effect of the fuel material, a large reactivity upswing occurs when the gadolinia is depleted. To minimize the reactivity swing of the CIMBA-loaded FA, two approaches were investigated. One is controlling the spatial self-shielding effect of the CIMBA as burnup proceeds by a multi-layered structure of the CIMBA (ML-CIMBA) and the other is the mixed-loading of two different types of CIMBA (MIX-CIMBA). Both approaches show promising performances to minimize the reactivity swing, where the MIX-CIMBA is more preferable due to its simpler fabrication process. In conclusion, the MIX-CIMBA is expected to accelerate the commercialization of the CIMBA and can be used to achieve an optimal soluble-boron-free SMR core design.

Effect of micronutritional-element deficiencies on the metabolism of Chlorella cells. (II) On the biosynthetic activities of protein, nucleic acids and phospholipid (Chlorella 의 물질대사에 미치는 미양원소의 결핍효과(제 2 ) -, 리보 및 의 생합성능에 관하여-)

  • Lee, Yung-Nok;Chin, Pyung;Sim, Woong-Seop
    • Korean Journal of Microbiology
    • /
    • v.6 no.1
    • /
    • pp.22-28
    • /
    • 1968
  • Chlorella ellipsoidea cells were cultured in an iron, copper, zinc, manganese, molybdenum or boron-free medium. Biosynthetic activities of nucleic acids, protein and phospholipid in chlorella cells, which were growing in a microelement deficient medium were compared with those of the normal cells by measuring the contents of phosphate, amino acids or UV-absorbing substances in the various cell fractions. When the algae were grown in a molybdenum-free medium, the amounts of phosphate in the acid-soluble fraction of the cells increased, whereas the amounts of alkali-stable protein and RNA decreased compared with the normal cells showing that the synthesis of protein and RNA from the early products of photosynthesis was inhibited. When the algae were grown in a boron-free medium, amounts of alkali-labile protein and phospholipid of the cells decreased, while the amount of phosphate in acid-soluble fraction increased compared with the normal cells showing that the biosynthesis of protein and phospholipid from the early products of photosynthesis was retarded. In general, amounts of protein and RNA in the microelement deficient cells significantly decreased compared with those of the normal cells. Phosphate content in the acid-soluble fraction of the algal cell grown in an zinc, copper, molybdenum, or boron-free medium increased considerably, whereas that of the algal cell grown in an iron or manganese-free medium decreased remarkably compared with that of the control. It is considered, therefore, that molybdenum, zinc, copper and boron etc. play an important role in the biosyntbesis of macromolecule from acid-soluble phosphate compounds, in contrast to the principal action of iron and manganese on the photosynthetic process itself.

  • PDF

Nuclear Design Feasibility of the Soluble Boron Free PWR Core

  • Kim, Jong-Chae;Kim, Myung-Hyun;Lee, Un-Chul;Kim, Young-Jin
    • Nuclear Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.342-352
    • /
    • 1998
  • A nuclear design feasibility of soluble boron free(SBF core for the medium-sized(600MWe) PWR was investigated. The result conformed that soluble boron free operation could be performed by using current PWR proven technologies. Westinghouse advanced reactor, AP-600 was chosen as a design prototype. Design modification was applied for the assembly design with burnable poison and control rod absorber material. In order to control excess reactivity, large amount of gadolinia integral burnable poison rods were used and B4C was used as a control rod absorber material. For control of bottom shift axial power shape due to high temperature feedback in SBF core, axial zoning of burnable poison was applied to the fuel assemblies design. The combination of enrichment and rod number zoning for burnable poison could make an excess reactivity swing flat within around 1% and these also led effective control on axial power offset and peak pin power, The safety assessment of the designed core was peformed by the calculation of MTC, FTC and shutdown margin. MTC in designed SBF core was greater around 6 times than one of Ulchin unit 3&4. Utilization of enriched BIO(up to 50w1o) in B4C shutdown control rods provided enough shutdown margin as well as subcriticality at cold refueling condition.

  • PDF

An advanced core design for a soluble-boron-free small modular reactor ATOM with centrally-shielded burnable absorber

  • Nguyen, Xuan Ha;Kim, ChiHyung;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.369-376
    • /
    • 2019
  • A complete solution for a soluble-boron-free (SBF) small modular reactor (SMR) is pursued with a new burnable absorber concept, namely centrally-shielded burnable absorber (CSBA). Neutronic flexibility of the CSBA design has been discussed with fuel assembly (FA) analyses. Major design parameters and goals of the SBF SMR are discussed in view of the reactor core design and three CSBA designs are introduced to achieve both a very low burnup reactivity swing (BRS) and minimal residual reactivity of the CSBA. It is demonstrated that the core achieves a long cycle length (~37 months) and high burnup (~30 GWd/tU), while the BRS is only about 1100 pcm and the radial power distribution is rather flat. This research also introduces a supplementary reactivity control mechanism using stainless steel as mechanical shim (MS) rod to obtain the criticality during normal operation. A further analysis is performed to investigate the local power peaking of the CSBA-loaded FA at MS-rodded condition. Moreover, a simple $B_4C$-based control rod arrangement is proposed to assure a sufficient shutdown margin even at the cold-zero-power condition. All calculations in this neutronic-thermal hydraulic coupled investigation of the 3D SBF SMR core are completed by a two-step Monte Carlo-diffusion hybrid methodology.

Possible power increase in a natural circulation Soluble-Boron-Free Small Modular Reactor using the Truly Optimized PWR lattice

  • Steven Wijaya;Xuan Ha Nguyen;Yonghee Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.330-338
    • /
    • 2023
  • In this study, impacts of an enhanced-moderation Fuel Assembly (FA) named Truly Optimized PWR (TOP) lattice, which is modified based on the standard 17 × 17 PWR FA, are investigated in a natural circulation Soluble-Boron-Free (SBF) Small Modular Reactor (SMR). Two different TOP lattice designs are considered for the analysis; one is with 1.26 cm pin pitch and 0.38 cm fuel pellet radius, and the other is with 1.40 cm pin pitch and 0.41 cm fuel pellet radius. The NuScale core design is utilized as the base model and assumed to be successfully converted to an SBF core. The analysis is performed following the primary coolant circulation loop, and the reactor is modelled as a single channel for thermal-hydraulic analyses. It is assumed that the ratio of the core pressure drop to the total system pressure drop is around 0.3. The results showed that the reactor power could be increased by 2.5% and 9.8% utilizing 1.26/0.38 cm and 1.40/0.41 cm TOP designs, respectively, under the identical coolant inlet and outlet temperatures as the constraints.

Reactor core design with practical gadolinia burnable absorbers for soluble boron-free operation in the innovative SMR

  • Jin Sun Kim;Tae Sik Jung;Jooil Yoon
    • Nuclear Engineering and Technology
    • /
    • v.56 no.8
    • /
    • pp.3144-3154
    • /
    • 2024
  • The development of soluble boron-free (SBF) operation in the innovative Small Modular Reactor (i-SMR) requires effective strategies for managing excess reactivity over extended operational cycles. This paper introduces a practical approach to reactor core design for SBF operation in i-SMR, emphasizing the use of gadolinia burnable absorbers (BA). The study investigates the feasibility of Highly Intensive and Discrete Gadolinia/Alumina Burnable Absorber (HIGA) rods for controlling excess reactivity sustainably. Through comprehensive analysis and simulations, the reactivity behavior with varying quantities of HIGA rods is examined, leading to the development of optimized fuel assembly designs. Furthermore, the integration of HIGA rods with integral gadolinia BA rods is discussed to enhance reactivity control and operational flexibility further. This approach utilizes the spatial self-shielding effect of gadolinia for extended reactivity management, crucial for stable and efficient reactor performance. The paper thoroughly addresses core design considerations, including fuel assembly configurations and control rod patterns, to ensure safety and performance in initial and reload cycles. This research advances the development of SBF operation in i-SMR by offering practical reactivity management solutions.

Conceptual Core Design of 1300MWe Reactor for Soluble Boron Free Operation Using a New Fuel Concept

  • Kim, Soon-Young;Kim, Jong-Kyung
    • Nuclear Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.391-400
    • /
    • 1999
  • A conceptual core design of the 1,300MWe KNGR (Korean Next Generation Reactor) without using soluble boron for reactivity control was developed to determine whether it is technically feasible to implement SBF (Soluble Boron Free) operation. Based on the borated KNGR core design, the fuel assembly and control rod configuration were modified for extensive use of burnable poison rods and control rods. A new fuel rod, in which Pu-238 had been substituted for a small amount of U-238 in fuel composition, was introduced to assist the reactivity control by burnable poison rods. Since Pu-238 has a considerably large thermal neutron capture cross section, the new fuel assembly showed good reactivity suppression capability throughout the entire cycle turnup, especially at BOC (Beginning of Cycle). Moreover, relatively uniform control of power distribution was possible since the new fuel assemblies were loaded throughout the core. In this study, core excess reactivity was limited to 2.0 %$\delta$$\rho$ for the minimal use of control rods. The analysis results of the SBF KNGR core showed that axial power distribution control can be achieved by using the simplest zoning scheme of the fuel assembly Furthermore, the sufficient shutdown margin and the stability against axial xenon oscillations were secured in this SBF core. It is, therefore, concluded that a SBF operation is technically feasible for a large sized LWR (Light Water Reactor).

  • PDF

Axial BP Zoning for the Soluble Boron Free Operation in Medium-Sized PWR

  • Kim, Jong-Chae;Kim, Myung-Hyun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.59-64
    • /
    • 1996
  • Feasibility of soluble boron free operation for the medium-sized commercial reactors was investigated. Westinghouse advanced reactor, AP-600 was chosen as a design prototype. Design modification was applied for the assembly design with gadolinia burnable poison-high Gd enrichment and axial poison zoning. CASMO and NECTA-C code system checked axial offset and peaking factors as fuels burned up. A core with complex axial burnable poison zoning satisfied design goals - small excess reactivity for 18 month cycle. Therefore, critical bank positioning for three control rod banks was sought with ease. A.O. value and Fq value were kept within the safety limit.

  • PDF