DOI QR코드

DOI QR Code

Reactor core design with practical gadolinia burnable absorbers for soluble boron-free operation in the innovative SMR

  • Received : 2024.03.02
  • Accepted : 2024.03.13
  • Published : 2024.08.25

Abstract

The development of soluble boron-free (SBF) operation in the innovative Small Modular Reactor (i-SMR) requires effective strategies for managing excess reactivity over extended operational cycles. This paper introduces a practical approach to reactor core design for SBF operation in i-SMR, emphasizing the use of gadolinia burnable absorbers (BA). The study investigates the feasibility of Highly Intensive and Discrete Gadolinia/Alumina Burnable Absorber (HIGA) rods for controlling excess reactivity sustainably. Through comprehensive analysis and simulations, the reactivity behavior with varying quantities of HIGA rods is examined, leading to the development of optimized fuel assembly designs. Furthermore, the integration of HIGA rods with integral gadolinia BA rods is discussed to enhance reactivity control and operational flexibility further. This approach utilizes the spatial self-shielding effect of gadolinia for extended reactivity management, crucial for stable and efficient reactor performance. The paper thoroughly addresses core design considerations, including fuel assembly configurations and control rod patterns, to ensure safety and performance in initial and reload cycles. This research advances the development of SBF operation in i-SMR by offering practical reactivity management solutions.

Keywords

Acknowledgement

This work was financially supported by i-SMR technology development Project (No. RS-2023-00264675) of the Innovative Modular Reactor Development Agency, which is funded by the Ministry of Trade, Industry and Energy.

References

  1. H.O. Kang, B.J. Lee, S.G. Lim, Light water SMR development status in Korea, Nucl. Eng. Des. 419 (Apr. 2024) 112966, https://doi.org/10.1016/j.nucengdes.2024.112966.
  2. F. Franceschini, B. Petrovic, Fuel with advanced burnable absorbers design for the IRIS reactor core: combined Erbia and IFBA, Ann. Nucl. Energy 36 (8) (Aug. 2009) 1201-1207, https://doi.org/10.1016/j.anucene.2009.04.005.
  3. A. Dandi, M. Lee, M.H. Kim, Feasibility of combinational burnable poison pins for 24-month cycle PWR reload core, Nucl. Eng. Technol. 52 (2) (Feb. 2020) 238-247, https://doi.org/10.1016/j.net.2019.07.026.
  4. J.A. Evans, M.D. DeHart, K.D. Weaver, D.D. Keiser, Burnable absorbers in nuclear reactors - a review, Nucl. Eng. Des. 391 (May 2022) 111726, https://doi.org/10.1016/j.nucengdes.2022.111726.
  5. J. Kim, H. Cho, M. Do, K. Seong, Use of solid pyrex rod for conceptual soluble boron free SMR, Trans. Am. Nucl. Soc. (2016) 1360-1362.
  6. J. Choe, Y. Zheng, D. Lee, H.C. Shin, Boron-free small modular pressurized water reactor design with new burnable absorber, Int. J. Energy Res. 40 (15) (Dec. 2016) 2128-2135, https://doi.org/10.1002/ER.3590.
  7. X.H. Nguyen, C.H. Kim, Y. Kim, An advanced core design for a soluble-boron-free small modular reactor ATOM with centrally-shielded burnable absorber, Nucl. Eng. Technol. 51 (2) (Apr. 2019) 369-376, https://doi.org/10.1016/j.net.2018.10.016.
  8. Y.G. Jo, H.C. Shin, Design optimization of cylindrical burnable absorber inserted into annular fuel pellets for soluble-boron-free SMR, Nucl. Eng. Technol. 54 (4) (Apr. 2022) 1464-1470, https://doi.org/10.1016/J.NET.2021.09.043.
  9. K. Ogura, T.A.T. Arisawa, T.S.T. Shibata, Ion collection from laser-induced plasma using positively biased wire electrode, Jpn. J. Appl. Phys. 31 (5R) (May 1992) 1485, https://doi.org/10.1143/JJAP.31.1485.
  10. G. Ploetz, C. Krystyniak, H. Dumas, Sintering characteristics of rare-earth oxides, J. Am. Ceram. Soc. 41 (Jun. 2006) 551-554, https://doi.org/10.1111/j.1151-2916.1958.tb12914.x.
  11. P.T. Sawbridge, N.A. Waterman, On the thermal expansion and crystallography of cubic (C) and monoclinic (B) forms of Gd2O3 in the temperature range 20 to 900◦C, J. Mater. Sci. 3 (1) (Jan. 1968) 15-18, https://doi.org/10.1007/BF00550884.
  12. D. Balestrieri, Y. Philipponneau, G.M. Decroix, Y. Jorand, G. Fantozzi, "PseudoPlasticity of monoclinic Gd2O3", J. Eur. Ceram. 18 (1998) p1073-p1077.
  13. S. Stecura, US Bureau of Mines Research Report No. 6616, 1964.
  14. Y. Larring, Protons in rare earth oxides, Solid State Ion 77 (Apr. 1995) 147-151, https://doi.org/10.1016/0167-2738(94)00261-P.
  15. S. Jeon, H. Hwang, Effect of hygroscopic nature on the electrical characteristics of lanthanide oxides (Pr2O3, Sm2O3, Gd2O3, and Dy2O3), J. Appl. Phys. 93 (10) (May 2003) 6393-6395, https://doi.org/10.1063/1.1569028.
  16. A.J. Tan, et al., Magneto-ionic control of magnetism using a solid-state proton pump, Nat. Mater. 18 (1) (Jan. 2019) 35-41, https://doi.org/10.1038/s41563-018-0211-5.
  17. V.D. Risovanyi, A.V.Z. Jsc, USE OF GADOLINIUM COMPOUNDS AS BURNUP ABSORBERS IN NUCLEAR REACTOR CORES, vol. 14, 2012.
  18. S. Lakiza, O. Fabrichnaya, Ch Wang, M. Zinkevich, F. Aldinger, Phase diagram of the ZrO2-Gd2O3-Al2O3 system, J. Eur. Ceram. Soc. 26 (3) (Jan. 2006) 233-246, https://doi.org/10.1016/j.jeurceramsoc.2004.11.011.
  19. K.S. Kim, S.G. Hong, J.Y. Cho, J.S. Song, Transport Lattice Code KARMA 1.1, vol. 2009, Trans. Korean Nucl. Soc. Autumn Meet., 2009.
  20. J.I. Yoon, S.W. Park, H.S. Park, Verification & validation of KARMA/ASTRA with benchmark and core-follow analyses, Trans. Am. Nucl. Soc. 105 (Jan. 2011) 801-802.
  21. J.I. Yoon, H.G. Joo, Two-level coarse mesh finite difference formulation with multigroup source expansion nodal kernels, J. Nucl. Sci. Technol. 45 (7) (2008) 668-682, https://doi.org/10.1080/18811248.2008.9711467.
  22. H.G. Joo, J.I. Yoon, S.G. Baek, Multigroup pin power reconstruction with two-dimensional source expansion and corner flux discontinuity, Ann. Nucl. Energy 36 (1) (2009) 85-97, https://doi.org/10.1016/j.anucene.2008.10.003.
  23. APR1400-K-X-FS-14002-NP, Revision 3, "APR1400 Design Control Document Tier 2,", KHNP, December 2018.
  24. ANSI/ANS-19.6.1-2005, "Reload Startup Physics Tests F17 Sor Pressurized Water Reactors." 555 North Kensington Avenue La Grange Park, American Nuclear Society, Illinois 60526 USA, 2005.