Acknowledgement
This work was financially supported by i-SMR technology development Project (No. RS-2023-00264675) of the Innovative Modular Reactor Development Agency, which is funded by the Ministry of Trade, Industry and Energy.
References
- H.O. Kang, B.J. Lee, S.G. Lim, Light water SMR development status in Korea, Nucl. Eng. Des. 419 (Apr. 2024) 112966, https://doi.org/10.1016/j.nucengdes.2024.112966.
- F. Franceschini, B. Petrovic, Fuel with advanced burnable absorbers design for the IRIS reactor core: combined Erbia and IFBA, Ann. Nucl. Energy 36 (8) (Aug. 2009) 1201-1207, https://doi.org/10.1016/j.anucene.2009.04.005.
- A. Dandi, M. Lee, M.H. Kim, Feasibility of combinational burnable poison pins for 24-month cycle PWR reload core, Nucl. Eng. Technol. 52 (2) (Feb. 2020) 238-247, https://doi.org/10.1016/j.net.2019.07.026.
- J.A. Evans, M.D. DeHart, K.D. Weaver, D.D. Keiser, Burnable absorbers in nuclear reactors - a review, Nucl. Eng. Des. 391 (May 2022) 111726, https://doi.org/10.1016/j.nucengdes.2022.111726.
- J. Kim, H. Cho, M. Do, K. Seong, Use of solid pyrex rod for conceptual soluble boron free SMR, Trans. Am. Nucl. Soc. (2016) 1360-1362.
- J. Choe, Y. Zheng, D. Lee, H.C. Shin, Boron-free small modular pressurized water reactor design with new burnable absorber, Int. J. Energy Res. 40 (15) (Dec. 2016) 2128-2135, https://doi.org/10.1002/ER.3590.
- X.H. Nguyen, C.H. Kim, Y. Kim, An advanced core design for a soluble-boron-free small modular reactor ATOM with centrally-shielded burnable absorber, Nucl. Eng. Technol. 51 (2) (Apr. 2019) 369-376, https://doi.org/10.1016/j.net.2018.10.016.
- Y.G. Jo, H.C. Shin, Design optimization of cylindrical burnable absorber inserted into annular fuel pellets for soluble-boron-free SMR, Nucl. Eng. Technol. 54 (4) (Apr. 2022) 1464-1470, https://doi.org/10.1016/J.NET.2021.09.043.
- K. Ogura, T.A.T. Arisawa, T.S.T. Shibata, Ion collection from laser-induced plasma using positively biased wire electrode, Jpn. J. Appl. Phys. 31 (5R) (May 1992) 1485, https://doi.org/10.1143/JJAP.31.1485.
- G. Ploetz, C. Krystyniak, H. Dumas, Sintering characteristics of rare-earth oxides, J. Am. Ceram. Soc. 41 (Jun. 2006) 551-554, https://doi.org/10.1111/j.1151-2916.1958.tb12914.x.
- P.T. Sawbridge, N.A. Waterman, On the thermal expansion and crystallography of cubic (C) and monoclinic (B) forms of Gd2O3 in the temperature range 20 to 900◦C, J. Mater. Sci. 3 (1) (Jan. 1968) 15-18, https://doi.org/10.1007/BF00550884.
- D. Balestrieri, Y. Philipponneau, G.M. Decroix, Y. Jorand, G. Fantozzi, "PseudoPlasticity of monoclinic Gd2O3", J. Eur. Ceram. 18 (1998) p1073-p1077.
- S. Stecura, US Bureau of Mines Research Report No. 6616, 1964.
- Y. Larring, Protons in rare earth oxides, Solid State Ion 77 (Apr. 1995) 147-151, https://doi.org/10.1016/0167-2738(94)00261-P.
- S. Jeon, H. Hwang, Effect of hygroscopic nature on the electrical characteristics of lanthanide oxides (Pr2O3, Sm2O3, Gd2O3, and Dy2O3), J. Appl. Phys. 93 (10) (May 2003) 6393-6395, https://doi.org/10.1063/1.1569028.
- A.J. Tan, et al., Magneto-ionic control of magnetism using a solid-state proton pump, Nat. Mater. 18 (1) (Jan. 2019) 35-41, https://doi.org/10.1038/s41563-018-0211-5.
- V.D. Risovanyi, A.V.Z. Jsc, USE OF GADOLINIUM COMPOUNDS AS BURNUP ABSORBERS IN NUCLEAR REACTOR CORES, vol. 14, 2012.
- S. Lakiza, O. Fabrichnaya, Ch Wang, M. Zinkevich, F. Aldinger, Phase diagram of the ZrO2-Gd2O3-Al2O3 system, J. Eur. Ceram. Soc. 26 (3) (Jan. 2006) 233-246, https://doi.org/10.1016/j.jeurceramsoc.2004.11.011.
- K.S. Kim, S.G. Hong, J.Y. Cho, J.S. Song, Transport Lattice Code KARMA 1.1, vol. 2009, Trans. Korean Nucl. Soc. Autumn Meet., 2009.
- J.I. Yoon, S.W. Park, H.S. Park, Verification & validation of KARMA/ASTRA with benchmark and core-follow analyses, Trans. Am. Nucl. Soc. 105 (Jan. 2011) 801-802.
- J.I. Yoon, H.G. Joo, Two-level coarse mesh finite difference formulation with multigroup source expansion nodal kernels, J. Nucl. Sci. Technol. 45 (7) (2008) 668-682, https://doi.org/10.1080/18811248.2008.9711467.
- H.G. Joo, J.I. Yoon, S.G. Baek, Multigroup pin power reconstruction with two-dimensional source expansion and corner flux discontinuity, Ann. Nucl. Energy 36 (1) (2009) 85-97, https://doi.org/10.1016/j.anucene.2008.10.003.
- APR1400-K-X-FS-14002-NP, Revision 3, "APR1400 Design Control Document Tier 2,", KHNP, December 2018.
- ANSI/ANS-19.6.1-2005, "Reload Startup Physics Tests F17 Sor Pressurized Water Reactors." 555 North Kensington Avenue La Grange Park, American Nuclear Society, Illinois 60526 USA, 2005.