• 제목/요약/키워드: Solubility parameter

검색결과 114건 처리시간 0.018초

Ethylene Glycol 유사체가 탈회된 상아질의 물리적 성질에 미치는 영향 (THE EFFECT OF ETHYLENE GLYCOL ANALOGS ON MECHANICAL PROPERTIES OF MOIST DEMINERALIZED DENTIN MATRIX)

  • 이경하;조영곤;이광원
    • Restorative Dentistry and Endodontics
    • /
    • 제31권4호
    • /
    • pp.290-299
    • /
    • 2006
  • 본 연구에서는 상아질의 항복인장강도 (UTS)나 탄성계수 (E)와 같은 물리적 특성이 적용된 용매틀의 각각에 대한 Hoy의 수소결합 용해도 매개변수에 반비례한다는 가설을 설정하고 실험한 결과 가설이 입증되었으며 이를 토대로 다음과 같은 결론을 유도하여 보았다. 첫째는 탈회된 상아질의 인장 특성 및 물성이 가해진 극성 용매의 수소결합능에 밀접히 연관되어 있다는 것이며, 둘째는 낮은 수소결합능을 가진 용매는 교원섬유 층 내에서 새로운 펩타이드간 수소결합을 유도함으로써 탈회된 상아질의 인장력 및 탄성계수를 증가시킨다는 결과이다. 셋째로는 이러한 결과들을 토대로 높은 수소결합능을 가진 용매들은 새로운 펩타이드간 수소결합의 형성을 차단하여 탈회된 상아질의 구조적 특성을 유지시킬 수 있다는 결론을 도출하였다.

폴리설폰 중공사막 구조에 대한 조용매 γ-Butyrolactone 첨가 영향 (Effect of Addition of Cosolvent γ-Butyrolactone on Morphology of Polysulfone Hollow Fiber Membranes)

  • 윤석복;이용택
    • 공업화학
    • /
    • 제25권3호
    • /
    • pp.274-280
    • /
    • 2014
  • 비용매 유도 상전이(nonsolvent induced phase separation, NIPS) 방법을 이용하여 PSf (polysulfone) 중공사 분리막을 제조하였다. PSf/DMAc (N,N-dimethylacetamide)로 이루어진 고분자 용액에 조용매로 GBL (${\gamma}$-butyrolactone)을 첨가하였으며, 물을 응고용액으로 이용하여 중공사 분리막을 제조하였다. 제조된 분리막은 전자주사현미경을 이용하여 그 구조를 분석하였으며 그 결과 GBL의 농도가 증가함에 따라 밀집 구조의 분리활성층과 스폰지 형상의 지지층으로 구성된 이중구조 형태의 비대칭 다공성의 구조를 나타내었다. 또한, 조용매 GBL은 고분자용액의 용해도 상수를 변화시켜 열역학적 상분리 촉진 역할을 할 수 있음을 알 수 있었다. 고분자용액 내의 조용매 GBL의 존재 유무와 GBL의 농도, 첨가제의 농도 그리고 내부응고제의 종류에 따라 중공사 분리막의 구조뿐만 아니라 순수투과도 및 분리특성에도 매우 큰 영향을 미치는 것을 확인하였다. 내부응고제로 EG보다 PEG를 사용하였을 경우 $0.05{\mu}m$ PSL (polystyrene latex) bead를 이용하여 배제 특성을 측정한 결과 5% 정도로 소폭 감소한 반면 순수투과플럭스는 최대 130배 이상 증가하는 효과를 나타내었다.

리튬 이온 전지용 개스킷 고무 물성에 미치는 가교조제의 영향 (Effects of Activator on Rubber Characteristics for Gasket to Lithium Ion Battery)

  • 강동국;김혜영;강영임;허병기;서관호
    • 공업화학
    • /
    • 제22권4호
    • /
    • pp.395-399
    • /
    • 2011
  • 리튬 이온 전지에 사용되는 개스킷 재료는 내전해액성, 전기 절연성, 압축 영구 줄음률, 비오염성, 저온성이 요구된다. 개스킷 고무에 적용되는 가교조제의 영향을 살펴보기 위하여 리튬 이온 전지에 있어 대표적 용매인 propylene carbonate에서 용해도 지수의 차가 큰 ethylene propylene diene monomer (EPDM)에 금속산화물인 가교조제의 함량을 조정하여 compound를 배합하였다. 이렇게 배합된 compound를 리튬 이온 전지의 작동환경을 고려하여 전해액에 대한 장기평가 및 압축 영구 줄음률, 저온성에 대한 평가를 실시하였다. 본 실험에서는 다양한 가교조제를 사용하여 가교조제에 따른 고무재료의 물리적 화학적 특성 및 리튬 이온 전지에의 영향에 대하여 검토하였다. 가교조제로 ZnO를 사용한 고무에서 1000 h까지의 공기 노화 시험 및 전해액의 대표 유기용매인 propylene carbonate 침적시험에 대해 안정적인 물성을 얻을 수 있었으나, 이온 용출성 평가에서는 $Zn^{2+}$가 용출되기 때문에 리튬 이온 전지용 개스킷에 적용되는 고무 배합에서는 ZnO 사용을 제한하여야 한다.

Manganese and Iron Interaction: a Mechanism of Manganese-Induced Parkinsonism

  • Zheng, Wei
    • 한국환경성돌연변이발암원학회:학술대회논문집
    • /
    • 한국환경성돌연변이발암원학회 2003년도 추계학술대회
    • /
    • pp.34-63
    • /
    • 2003
  • Occupational and environmental exposure to manganese continue to represent a realistic public health problem in both developed and developing countries. Increased utility of MMT as a replacement for lead in gasoline creates a new source of environmental exposure to manganese. It is, therefore, imperative that further attention be directed at molecular neurotoxicology of manganese. A Need for a more complete understanding of manganese functions both in health and disease, and for a better defined role of manganese in iron metabolism is well substantiated. The in-depth studies in this area should provide novel information on the potential public health risk associated with manganese exposure. It will also explore novel mechanism(s) of manganese-induced neurotoxicity from the angle of Mn-Fe interaction at both systemic and cellular levels. More importantly, the result of these studies will offer clues to the etiology of IPD and its associated abnormal iron and energy metabolism. To achieve these goals, however, a number of outstanding questions remain to be resolved. First, one must understand what species of manganese in the biological matrices plays critical role in the induction of neurotoxicity, Mn(II) or Mn(III)? In our own studies with aconitase, Cpx-I, and Cpx-II, manganese was added to the buffers as the divalent salt, i.e., $MnCl_2$. While it is quite reasonable to suggest that the effect on aconitase and/or Cpx-I activites was associated with the divalent species of manganese, the experimental design does not preclude the possibility that a manganese species of higher oxidation state, such as Mn(III), is required for the induction of these effects. The ionic radius of Mn(III) is 65 ppm, which is similar to the ionic size to Fe(III) (65 ppm at the high spin state) in aconitase (Nieboer and Fletcher, 1996; Sneed et al., 1953). Thus it is plausible that the higher oxidation state of manganese optimally fits into the geometric space of aconitase, serving as the active species in this enzymatic reaction. In the current literature, most of the studies on manganese toxicity have used Mn(II) as $MnCl_2$ rather than Mn(III). The obvious advantage of Mn(II) is its good water solubility, which allows effortless preparation in either in vivo or in vitro investigation, whereas almost all of the Mn(III) salt products on the comparison between two valent manganese species nearly infeasible. Thus a more intimate collaboration with physiochemists to develop a better way to study Mn(III) species in biological matrices is pressingly needed. Second, In spite of the special affinity of manganese for mitochondria and its similar chemical properties to iron, there is a sound reason to postulate that manganese may act as an iron surrogate in certain iron-requiring enzymes. It is, therefore, imperative to design the physiochemical studies to determine whether manganese can indeed exchange with iron in proteins, and to understand how manganese interacts with tertiary structure of proteins. The studies on binding properties (such as affinity constant, dissociation parameter, etc.) of manganese and iron to key enzymes associated with iron and energy regulation would add additional information to our knowledge of Mn-Fe neurotoxicity. Third, manganese exposure, either in vivo or in vitro, promotes cellular overload of iron. It is still unclear, however, how exactly manganese interacts with cellular iron regulatory processes and what is the mechanism underlying this cellular iron overload. As discussed above, the binding of IRP-I to TfR mRNA leads to the expression of TfR, thereby increasing cellular iron uptake. The sequence encoding TfR mRNA, in particular IRE fragments, has been well-documented in literature. It is therefore possible to use molecular technique to elaborate whether manganese cytotoxicity influences the mRNA expression of iron regulatory proteins and how manganese exposure alters the binding activity of IPRs to TfR mRNA. Finally, the current manganese investigation has largely focused on the issues ranging from disposition/toxicity study to the characterization of clinical symptoms. Much less has been done regarding the risk assessment of environmenta/occupational exposure. One of the unsolved, pressing puzzles is the lack of reliable biomarker(s) for manganese-induced neurologic lesions in long-term, low-level exposure situation. Lack of such a diagnostic means renders it impossible to assess the human health risk and long-term social impact associated with potentially elevated manganese in environment. The biochemical interaction between manganese and iron, particularly the ensuing subtle changes of certain relevant proteins, provides the opportunity to identify and develop such a specific biomarker for manganese-induced neuronal damage. By learning the molecular mechanism of cytotoxicity, one will be able to find a better way for prediction and treatment of manganese-initiated neurodegenerative diseases.

  • PDF