DOI QR코드

DOI QR Code

THE EFFECT OF ETHYLENE GLYCOL ANALOGS ON MECHANICAL PROPERTIES OF MOIST DEMINERALIZED DENTIN MATRIX

Ethylene Glycol 유사체가 탈회된 상아질의 물리적 성질에 미치는 영향

  • Lee Kyung-Hee (Department of Conservative Dentistry, School of Dentistry, Chosun National University) ;
  • Cho Young-Gon (Department of Conservative Dentistry, College of Dentistry, Chosun University) ;
  • Lee Kwang-Won (Department of Conservative Dentistry, School of Dentistry, Chosun National University)
  • 이경하 (전북대학교 치과대학 치과보존학교실) ;
  • 조영곤 (조선대학교 치과대학 치과보존학교실) ;
  • 이광원 (전북대학교 치과대학 치과보존학교실)
  • Published : 2006.07.01

Abstract

Objectives: The purpose of this study is to evaluate the effect of ethylene glycol analogs on modulus of elasticity and ultimate tensile strength of moist, demineralized dentin matrix. Methods: Dentin disks 0.5 mrn thick were prepared from mid-coronal dentin of extracted. unerupted, human third molars. 'I' beam and hour-glass shaped specimens were prepared from the disks, the ends protected with nail varnish and the central regions completely demineralized in 0.5M EDTA for 5 days. Ultimate tensile stress (UTS) and low strain modulus of elasticity (E) were determined with specimens immersed for 60 min in distilled water $(H_{2}O)$, ethylene glycol $(HO-CH_{2}-CH_{2}-OH)$, 2-methoxyethanol $(H_{3}CO-CH_{2}-CH_{2}-OH)$, and 1,2-dimethoxyethane $(H_{3}CO-CH_{2}-CH_{3}-OCH_{3})$ prior to testing in those same media. Modulus of elasticity was measured on the same specimens in a repeated measures experimental design. The results were analyzed with a one-way ANOVA on ranks, followed by Dunn's test at ${\alpha}\;=\;0.05$. Regression analysis examined the relationship between UTS or E and hoy's solubility parameter for hydrogen bonding $({\delta}_{h})$ of each solvent. Results: The UTS of demineralized dentin in water, ethylene glycol, 2-methoxyethanol, and 1,2-dimethoxyethane was 24 (3), 30 (5), 37 (6), and 45 (6) MPa, ${\times}$ (SD) N = 10. Low strain E for the same media were 16 (13), 23 (14), 52 (24), and 62 (22) MPa. Regression analysis of UTS vs ${\delta}_{h}$ revealed a significant $(p\;<\;0.0001,\;r\;=\;-0.99,\;R^{2}\;=\;0.98)$ inverse, exponential relationship. A similar inverse relationship was obtained between low strain E vs ${\delta}_{h}\;(p\;<\;0.0005,\;r\;=\;-0.93,\;R^{2}\;=\;0.86)$. Significance: The tensile properties of demineralized dentin are dependent upon the hydrogen bonding ability of polar solvents $({\delta}_{h})$. Solvents with low ${\delta}_{h}$ values may permit new interpeptide H-bonding in collagen that increases its tensile properties. Solvents with high ${\delta}_{h}$ values prevent the development of these new interpeptide H-bonds.

본 연구에서는 상아질의 항복인장강도 (UTS)나 탄성계수 (E)와 같은 물리적 특성이 적용된 용매틀의 각각에 대한 Hoy의 수소결합 용해도 매개변수에 반비례한다는 가설을 설정하고 실험한 결과 가설이 입증되었으며 이를 토대로 다음과 같은 결론을 유도하여 보았다. 첫째는 탈회된 상아질의 인장 특성 및 물성이 가해진 극성 용매의 수소결합능에 밀접히 연관되어 있다는 것이며, 둘째는 낮은 수소결합능을 가진 용매는 교원섬유 층 내에서 새로운 펩타이드간 수소결합을 유도함으로써 탈회된 상아질의 인장력 및 탄성계수를 증가시킨다는 결과이다. 셋째로는 이러한 결과들을 토대로 높은 수소결합능을 가진 용매들은 새로운 펩타이드간 수소결합의 형성을 차단하여 탈회된 상아질의 구조적 특성을 유지시킬 수 있다는 결론을 도출하였다.

Keywords

References

  1. Nakabayashi N, Pashley DH. Hybridization of Dental Hard Tissues. Quintessence Publishers, 1st edit, Tokyo, 42-56, 1998
  2. Maciel KT, Carvalho RM, Brule RD, Preston CD, Russell CM, Pashley DH. The effects of acetone, ethanol, HEMA and air on the stiffness of human decalcified dentin matrix. J Dent Res 75:1851-1858. 1996 https://doi.org/10.1177/00220345960750110601
  3. Pashley DH, Agee KA Nakajima M, Tay FR, Carvalho RM, Terada Rss. Harmon FJ, Lee K-W, Rueggeberg RA. Solvent-induced dimensional changes in EDTA demineralized dentin matrix. J Biomed Mater Res 56(2):273-81, 2001 https://doi.org/10.1002/1097-4636(200108)56:2<273::AID-JBM1095>3.0.CO;2-A
  4. Barton Allan FM. Chapter 5: Expanded cohesion parameters, In: CRC Handbook of Solubility Parameters and Other Cohesion Parameters, 2nd ed., CRC Press, Boca Raton, pp.98-103, pp.250-257, 1991
  5. Pashley DH, Agee KA, Carvalho RM, Lee KW, Tay FR, Callison TE. Effects of water and water-free polar solvents on the tensile properties of demineralized dentin. Dent Mater 19(5): 347-52, 2003 https://doi.org/10.1016/S0109-5641(02)00065-9
  6. Asmussen E, Uno S. Solubility parameters, fractional polarities, and bond strengths of some intermediary resins used in dentin bonding. J Dent Res 72(3): 558-65, 1993 https://doi.org/10.1177/00220345930720030101
  7. Barton Allan FM. Handbook of Solubility Parameters and other Cohesion Parameters 2nd ed., CRC, 123-137, 1991
  8. Hoy KL. Tables of Solubility Parameters, Solvent and Coatings Materials Research and Development Department, Union Carbide Co., 1985
  9. Pashley DH, Zhang Y,Agee KA, Rouse CJ, Carvalho RM, Russell CM. Permeability of demineralized dentin to HEMA. Dent Mater 16:7-14,2000 https://doi.org/10.1016/S0109-5641(99)00077-9
  10. Asmusen E, Hansen EK, Pentzfeldt A. Influence of the solubility parameter of intermediary resin on the effectiveness of the Gluma bonding system, J Dent Res 70(9): 1290-1293, 1991 https://doi.org/10.1177/00220345910700091101
  11. Miller RG, Bowles CQ, Chappelow CC, Eick JD. Application of solubility parameter theory to dentinbonding and adhesive strength correlations. J Biomed Mater Res 41:237-243, 1998 https://doi.org/10.1002/(SICI)1097-4636(199808)41:2<237::AID-JBM8>3.0.CO;2-J
  12. Sasaki N, Odajima S. Stress-strain curve and Young s modulus of a collagen molecules as determined by the X-ray diffraction technique. J Biomechanics 29:655-658, 1996 https://doi.org/10.1016/0021-9290(95)00110-7
  13. Craig R. Restorative Dental materials. 8th ed., Mosby, 65-112, 1989
  14. Sana H, Ciucchi B, Takatsu T, Russell CM, Pashley DH. Tensile properties of mineralized and demineralized human and bovine dentin. J Dent Res 73(6): 1205-11, 1994 https://doi.org/10.1177/00220345940730061201
  15. Pedigao J, Lopes M, Gerableri S, Lopes GC, Garcia-Godoy F. Effect of a sodium hypochlorite gel on dentin bonding. Dent Mater 16:311-323,2000 https://doi.org/10.1016/S0109-5641(00)00021-X
  16. Zhang Y, Agee K, Nor J, Carvalho R, Sachar B, Russell C, Pashley D. Effects of acid-etching on the tensile properties of demineralized dentin matrix. Dent mater 14:222-228, 1998 https://doi.org/10.1016/S0109-5641(98)00035-9
  17. Pashley DH, Carvalho RM. Tay FR. Agee KA, Lee KW. Solvation of dried dentin matrix by water and other polar solvents. Am J Dent 15(2) :97-102, 2002
  18. Knott L, Bailey AJ. Collagen cross-links in mineralizing tissues: A review of their chemistry, function and clinical relevance. Bone 22:181-187, 1988 https://doi.org/10.1016/S8756-3282(97)00279-2
  19. Silver FH, Christiansen D, Snowhill PB, Chen Y, Landis WJ. The role of mineral in the storage of elastic energy in turkey tendons. Biomacromolecules 1: 180-185, 2000 https://doi.org/10.1021/bm9900139
  20. Tay FR, Carvalho RM, Yiu CKY, King NM, Zhang Y, Agee K. Bouillaguet S, Pashley DH. Mechanical disruption of dentin collagen fibrils during resin-dentin bond testing. J Adhes Dent 2:175-192,2000
  21. Kato YP, Christiansen DL, Hahn RA, Shieh SJ, Goldstein JD, Silver FH. Mechanical properties of collagen fibers: A comparison of reconstituted and rat tail tendon fibers. Biomaterials 10:38-42, 1989 https://doi.org/10.1016/0142-9612(89)90007-0
  22. Finger WJ, Inoue M, Asmussen E. Effects of wetability of adhesive resins on bonding to dentin. Am J Dent 7:35-38, 1994
  23. Chappelow CC, Power MD, Bowles CQ, Miller RG, Pinzino CS, Eick JD. Novel priming and cross-linking systems for use with isocyano-methacrylate dental adhesives. Dent Mater 16:393-405, 2000 https://doi.org/10.1016/S0109-5641(00)00034-8
  24. Kato G, Nakabayashi N. The durability of adhesion to phosphoric acid etched, wet dentin substrates. Dent Mater 4(5) :347-52, 1998 https://doi.org/10.1016/S0109-5641(99)00003-2