• Title/Summary/Keyword: Soliton

Search Result 159, Processing Time 0.021 seconds

SECOND ORDER PARALLEL TENSORS AND RICCI SOLITONS ON (LCS)n-MANIFOLDS

  • Chandra, Soumen;Hui, Shyamal Kumar;Shaikh, Absos Ali
    • Communications of the Korean Mathematical Society
    • /
    • v.30 no.2
    • /
    • pp.123-130
    • /
    • 2015
  • The object of the present paper is to study the second order parallel symmetric tensors and Ricci solitons on $(LCS)_n$-manifolds. We found the conditions of Ricci soliton on $(LCS)_n$-manifolds to be shrinking, steady and expanding respectively.

A PREDICTOR-CORRECTOR SCHEME FOR THE NUMERICAL SOLUTION OF THE BOUSSINESQ EQUATION

  • Ismail, M.S.;Bratsos, A.G.
    • Journal of applied mathematics & informatics
    • /
    • v.13 no.1_2
    • /
    • pp.11-27
    • /
    • 2003
  • A fourth order in time and second order in space scheme using a finite-difference method is developed for the non-linear Boussinesq equation. For the solution of the resulting non-linear system a predictor-corrector pair is proposed. The method is analyzed for local truncation error and stability. The results of a number of numerical experiments for both the single and the double-soliton waves are given.

A LINEARIZED FINITE-DIFFERENCE SCHEME FOR THE NUMERICAL SOLUTION OF THE NONLINEAR CUBIC SCHRODINGER EQUATION

  • Bratsos, A.G.
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.3
    • /
    • pp.683-691
    • /
    • 2001
  • A linearized finite-difference scheme is used to transform the initial/boundary-value problem associated with the nonlinear Schrodinger equation into a linear algebraic system. This method is developed by replacing the time and the nonlinear term by an appropriate parametric linearized scheme based on Taylor’s expansion. The resulting finite-difference method is analysed for stability and convergence. The results of a number of numerical experiments for the single-soliton wave are given.

Optical pulse compression at 1.319$\mu\textrm{m}$ through fiber-grating pair and further compression using soliton effects (광섬유와 회절격자를 이용한 1.319$\mu\textrm{m}$파장 광펄스의 압축과 솔리톤 효과에 의한 재압축)

  • 이재승
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1991.06a
    • /
    • pp.102-108
    • /
    • 1991
  • Utilizing self-phase modulation effects of a dispersion-shifted fiber and delay-line characteristics of two gratings, mode-locked 80 ps pulses at 1.319${\mu}{\textrm}{m}$ wavelength from a Nd: YAG laser are compressed down to 2.1 ps. These pulses are further compressed down to 340 fs using higher order soliton effects in a common single mode fiber.

  • PDF

SOME DOUBLY-WARPED PRODUCT GRADIENT RICCI SOLITONS

  • Kim, Jongsu
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.3
    • /
    • pp.625-635
    • /
    • 2016
  • In this paper, we study certain doubly-warped products which admit gradient Ricci solitons with harmonic Weyl curvature and non-constant soliton function. The metric is of the form $g=dx^2_1+p(x_1)^2dx^2_2+h(x_1)^2\;{\tilde{g}}$ on ${\mathbb{R}}^2{\times}N$, where $x_1$, $x_2$ are the local coordinates on ${\mathbb{R}}^2$ and ${\tilde{g}}$ is an Einstein metric on the manifold N. We obtained a full description of all the possible local gradient Ricci solitons.

Simulation of Solitary Beam Interaction in Kerr Media (Kerr Medium에서의 단독 빔의 간섭에 관한 시뮬레이션)

  • 심형관
    • Journal of the Korea Society for Simulation
    • /
    • v.12 no.2
    • /
    • pp.75-89
    • /
    • 2003
  • This paper describe numerical experiments with solitary beams in a self focusing Kerr medium with fast response. Through formal analogies, it compare this results on the phase sensitivity of beam collision with known predictions about one dimensional soliton interaction. For incoherent oblique beam interaction, there occurs a non-periodic coupled-mode type transfer of energy, resulting in complete transmission each beam through the other one.

  • PDF

Elliptic Linear Weingarten Surfaces

  • Kim, Young Ho
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.3
    • /
    • pp.547-557
    • /
    • 2018
  • We establish some characterizations of isoparametric surfaces in the three-dimensional Euclidean space, which are associated with the Laplacian operator defined by the so-called II-metric on surfaces with non-degenerate second fundamental form and the elliptic linear Weingarten metric on surfaces in the three-dimensional Euclidean space. We also study a Ricci soliton associated with the elliptic linear Weingarten metric.

CERTAIN RESULTS ON ALMOST KENMOTSU MANIFOLDS WITH CONFORMAL REEB FOLIATION

  • Ghosh, Gopal;Majhi, Pradip
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.261-272
    • /
    • 2018
  • The object of the present paper is to study some curvature properties of almost Kenmotsu manifolds with conformal Reeb foliation. Among others it is proved that an almost Kenmotsu manifold with conformal Reeb foliation is Ricci semisymmetric if and only if it is an Einstein manifold. Finally, we study Yamabe soliton in this manifold.

CONFORMABLE FRACTIONAL SENSE OF FOAM DRAINAGE EQUATION AND CONSTRUCTION OF ITS SOLUTIONS

  • DARVISHI, MOHAMMAD T.;NAJAFI, MOHAMMAD;SHIN, BYEONG-CHUN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.25 no.3
    • /
    • pp.132-148
    • /
    • 2021
  • The modified F-expansion method is used to construct analytical solutions of the foam drainage equation with time- and space-fractional derivatives. The conformable derivatives are considered as spacial and temporal ones. As a result, some analytical exact solutions including kink, bright-dark soliton, periodic and rational solutions are obtained.

CURVATURE ESTIMATES FOR GRADIENT EXPANDING RICCI SOLITONS

  • Zhang, Liangdi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.3
    • /
    • pp.537-557
    • /
    • 2021
  • In this paper, we investigate the curvature behavior of complete noncompact gradient expanding Ricci solitons with nonnegative Ricci curvature. For such a soliton in dimension four, it is shown that the Riemann curvature tensor and its covariant derivatives are bounded. Moreover, the Ricci curvature is controlled by the scalar curvature. In higher dimensions, we prove that the Riemann curvature tensor grows at most polynomially in the distance function.