• Title/Summary/Keyword: Solid-state synthesis

Search Result 355, Processing Time 0.028 seconds

Effect of Support on Synthesis Gas Production of Supported Ni Catalysts (니켈 담지촉매를 이용한 합성가스 제조 시 담체의 영향)

  • Kim, Sang-Bum;Park, Eun-Seok;Cheon, Han-Jin;Kim, Young-Kook;Lim, Yun-Soo;Park, Hong-Soo;Hahm, Hyun-Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.289-295
    • /
    • 2003
  • Synthesis gas is produced commercially by a steam reforming process. However, the process is highly endothermic and energy intensive. Thus, this study was conducted to produce synthesis gas by the partial oxidation of methane to cut down the energy cost. Supported Ni catalysts were prepared by the impregnation method. To examine the activity of the catalysts, a differential fixed bed reactor was used, and the reaction was carried out at $750{\sim}850^{\circ}C$ and 1 atm. The fresh and used catalysts were characterized by XRD, XPS, TGA and AAS. The highest catalytic activity was obtained with the 13wt% Ni/MgO catalyst, with which methane conversion was 81%, and $H_2$ and CO selectivities were 94% and 93%, respectively. 13wt% Ni/MgO catalyst showed the best $MgNiO_2$ solid solution state, which can explain the highest catalytic activity of the 13wt% Ni/MgO catalyst.

Synthesis and photoluminescence of Ca3Si3O8F2: Ce4+, Eu3+, Tb3+ phosphor

  • Suresh, K.;PoornachandraRao, Nannapaneni V.;Murthy, K.V.R.
    • Advances in materials Research
    • /
    • v.3 no.4
    • /
    • pp.227-232
    • /
    • 2014
  • $Ce^{4+}$, $Eu^{3+}$, $Tb^{3+}$ co-doped $Ca_3Si_3O_8F_2$ phosphor was synthesized via solid state reaction method using $CaF_2$, $CaCO_3$ and $SiO_2$ as raw materials for the host and $Eu_2O_3$, $CeO_2$, and $Tb_4O_7$ as activators. The luminescent properties of the phosphor was analysed by spectrofluorophotometer at room temperature. The effect of excitation wavelengths on the luminescent properties of the phosphor i.e. under near-ultraviolet (nUV) and visible excitations was investigated. The emission peaks of $Ce^{4+}$, $Eu^{3+}$, $Tb^{3+}$ co-doped $Ca_3Si_3O_8F_2$ phosphor lays at 480(blue band), 550(green band) and 611nm (red band) under 380nm excitation wavelength, attributed to the $Ce^{4+}$ ion, $Tb^{3+}$ ion and $Eu^{3+}$ ions respectively. The results reveal that the phosphor emits white light upon nUV (380nm) / visible (465nm) illumination, and a red light upon 395nm / 535nm illumination. RE ions doped $Ca_3Si_3O_8F_2$ is a promising white light phosphor for LEDs. The emission colours can be seen using Commission international de l'eclairage (CIE) co-ordinates. A single host phosphor emitting different colours under different excitations indicates that it is a potential phosphor having applications in many fields.

Synthesis and Electrochemical Characteristics of Carbon added Li3V2(PO4)3 (탄소첨가한 Li3V2(PO4)3의 합성 및 전기화학적 특성)

  • Jo, Yeong-Im;Na, Byung-Ki
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.2
    • /
    • pp.101-108
    • /
    • 2012
  • The purpose of this study was to improve the conductivity of $Li_3V_2(PO_4){_3}$ by adding carbon source so that the discharge rate and cyclic properties were improved. Glucose and CNT were added to $Li_3V_2(PO_4){_3}$ and the structure and electrochemical properties were studied. $Li_3V_2(PO_4){_3}$, $Li_3V_2(PO_4){_3}$/C and $Li_3V_2(PO_4){_3}$/CNT were synthesised by solid state reaction using hydrogen reduction method at 600, 700, 800, $900^{\circ}C$. The cathode materials were assembled to coin cell type 2032 with Lithium metal as a counter electrode. The coin cell was galvanostatically evaluated in the voltage range of 3.0~4.8 V.

Synthesis and Luminescence Properties of Tb3+-Doped K2BaW2O8 Phosphors (Tb3+ 이온이 첨가된 K2BaW2O8 형광체의 합성 및 형광특성)

  • Jang, Kyoung-Hyuk;Koo, Jae-Heung;Seo, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.22 no.9
    • /
    • pp.489-493
    • /
    • 2012
  • Green phosphors $K_2BaW_2O_8:Tb^{3+}$(1.0 mol%) were synthesized by solid state reaction method. Differential thermal analysis was applied to trace the reaction processes. Three endothermic values of 95, 706, and $1055^{\circ}C$ correspond to the loss of absorbed water, the release of carbon dioxide, and the beginning of the melting point, respectively. The phase purity of the powders was examined using powder X-ray diffraction(XRD). Two strong excitation bands in the wavelength region of 200-310 nm were found to be due to the ${WO_4}^{2-}$ exciton transition and the 4f-5d transition of $Tb^{3+}$ in $K_2BaW_2O_8$. The excitation spectrum presents several lines in the range of 310-380 nm; these are assigned to the 4f-4f transitions of the $Tb^{3+}$ ion. The strong emission line at around 550 nm, due to the $^5D_4{\rightarrow}^7F_5$ transition, is observed together with weak lines of the $^5D_4{\rightarrow}^7F_J$(J = 3, 4, and 6) transitions. A broad emission band peaking at 530 nm is observed at 10 K, while it disappears at room temperature. The decay times of $Tb^{3+}$ $^5D_4{\rightarrow}^7F_5$ emission are estimated to be 4.8 and 1.4 ms, respectively, at 10 and 295 K; those of the ${WO_4}^{2-}$ exciton emissions are 22 and 0.92 ${\mu}s$ at 10 and 200 K, respectively.

Synthesis and Photoluminescence Properties of Red Phosphors Gd1-xAl3(BO3)4:Eux3+ (적색 형광체 Gd1-xAl3(BO3)4:Eux3+의 합성과 발광 특성)

  • Cho, Shin-Ho;Cho, Seon-Woog
    • Korean Journal of Materials Research
    • /
    • v.22 no.3
    • /
    • pp.145-149
    • /
    • 2012
  • Red phosphors of $Gd_{1-x}Al_3(BO_3)_4:{Eu_x}^{3+}$ were synthesized by using the solid-state reaction method. The phase structure and morphology of the phosphors were measured using X-ray diffraction (XRD) and field emission-scanning electron microscopy (FE-SEM), respectively. The optical properties of $GdAl_3(BO_3)_4:Eu^{3+}$ phosphors with concentrations of $Eu^{3+}$ ions of 0, 0.05, 0.10, 0.15, and 0.20 mol were investigated at room temperature. The crystals were hexagonal with a rhombohedral lattice. The excitation spectra of all the phosphors, irrespective of the $Eu^{3+}$ concentrations, were composed of a broad band centered at 265 nm and a narrow band having peak at 274 nm. As for the emission spectra, the peak wavelength was 613 nm under a 274 nm ultraviolet excitation. The intensity ratio of the red emission transition ($^5D_0{\rightarrow}^7F_2$) to orange ($^5D_0{\rightarrow}^7F_1$) shows that the $Eu^{3+}$ ions occupy sites of no inversion symmetry in the host. In conclusion, the optimum doping concentration of $Eu^{3+}$ ions for preparing $GdAl_3(BO_3)_4:Eu^{3+}$ phosphors was found to be 0.15 mol.

Development and Synthesis of La Doped CuO-ZnO-Al2O3 Mixed Oxide (La이 도핑된 CuO-ZnO-Al2O3 복합 산화물의 합성공정개발)

  • Jung, Mie-Won;Lim, Saet-Byeol;Moon, Bo-Ram;Hong, Tae-Whan
    • Korean Journal of Materials Research
    • /
    • v.21 no.1
    • /
    • pp.67-71
    • /
    • 2011
  • La doped CuO-ZnO-$Al_2O_3$ powders are prepared by sol-gel method with aluminum isopropoxide and primary distilled water as precursor and solvent. In this synthesized process, the obtained metal oxides caused the precursor such as copper (II) nitrate hydrate and zinc (II) nitrate hexahydrate were added. To improve the surface areas of La doped CuO-ZnO-$Al_2O_3$ powder, sorbitan (z)-mono-9-octadecenoate (Span 80) was added. The synthesized powder was calcined at various temperatures. The dopant was found to affect the surface area and particle size of the mixed oxide, in conjunction with the calcined temperature. The structural analysis and textual properties of the synthesized powder were measured with an X-ray Diffractometer (XRD), a Field-Emission Scanning Electron Microscope (FE-SEM), Bruner-Emmett-Teller surface analysis (BET), Thermogravimetry-Differential Thermal analysis (TG/DTA), $^{27}Al$ solid state Nuclear Magnetic Resonance (NMR) and transform infrared microspectroscopy (FT-IR). An increase of surface area with Span 80 was observed on La doped CuO-ZnO-$Al_2O_3$ powders from $25m^2$/g to $41m^2$/g.

Synthesis and Luminescent Properties of Sm3+-doped GdVO4 Phosphors (Sm3+ 도핑된 GdVO4 형광체의 제조와 발광 특성)

  • Cho, Shin-Ho;Cho, Seon-Woog
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.2
    • /
    • pp.93-98
    • /
    • 2012
  • $Gd_{1-x}VO_4:{Eu_x}^{3+}$ phosphor powders were synthesized with changing the concentration of $Sm^{3+}$ ion by using a solid-state reaction method. The crystal structures of all the phosphors were found to be a tetragonal system, composed of (200) diffraction peak centered at $24.76^{\circ}$, and the morphology of grains approached the spherical form with homeogenous size distribution when the concentration of $Sm^{3+}$ ion was 0.05 mol. As for the photoluminescence properties, all of the phosphor powders, irrespective of $Sm^{3+}$ ion concentration, indicated the yellow, orange, and red emission peaked at 565, 603, and 645 nm respectively. As the concentration of $Sm^{3+}$ ion increases, the intensity of excitation spectrum showed a decreasing tendency on the increase of Sm3+ ion concentration. The maximum excitation and emission spectra were observed and the symmetry ratio was 1.19 at 0.05 mol of $Sm^{3+}$ ion.

Synthesis of CoTiOx and Its Catalytic Activity in Continuous Wet TCE Oxidation (CoTiOx의 합성 및 연속 습식 TCE 산화반응에서의 촉매활성)

  • Kim, Moon-Hyeon
    • Journal of Environmental Science International
    • /
    • v.16 no.12
    • /
    • pp.1431-1437
    • /
    • 2007
  • Cobalt titanates($CoTiO_x$), such as $CoTiO_3$ and $Co_2TiO_4$, have been synthesized via a solid-state reaction and characterized using X-ray diffraction(XRD) and X-ray photoelectron spectroscopic(XPS) measurement techniques, prior to being used for continuous wet trichloroethylene(TCE) oxidation at $36^{\circ}C$, to support our earlier chemical structure model for Co species in 5 wt% $CoO_x/TiO_2$(fresh) and(spent) catalysts. Each XRD pattern for the synthesized $CoTiO_3$ and $Co_2TiO_4$ was very close to those obtained from the respective standard XRD data files. The two $CoTiO_x$ samples gave Co 2p XPS spectra consisting of very strong main peaks for Co $2p_{3/2}$ and $2p_{1/2}$ with corresponding satellite structures at higher binding energies. The Co $2p_{3/2}$ main structure appeared at 781.3 eV for the $CoTiO_3$, and it was indicated at 781.1 eV with the $Co_2TiO_4$. Not only could these binding energy values be very similar to that exhibited for the 5 wt% $CoO_x/TiO_2$(fresh), but the spin-orbit splitting(${\Delta}E$) had also no noticeable difference between the cobalt titanates and a sample of the fresh catalyst. Neither of all the $CoTiO_x$ samples were active for the wet TCE oxidation, as expected, but a sample of pure $Co_3O_4$ had a good activity for this reaction. The earlier proposed model for the surface $CoO_x$ species existing with the fresh and spent catalysts is very consistent with the XPS characterization and activity measurements for the cobalt titanates.

Synthesis and Photoluminescence Properties of CaWO4:Eu3+ Phosphors (CaWO4:Eu3+ 형광체의 합성과 발광 특성)

  • Cho, Shin-Ho;Cho, Seon-Woog
    • Korean Journal of Materials Research
    • /
    • v.22 no.5
    • /
    • pp.215-219
    • /
    • 2012
  • Red phosphors $Ca_{1-1.5x}WO_4:{Eu_x}^{3+}$ were synthesized with different concentrations of $Eu^{3+}$ ions by using a solid-state reaction method. The crystal structure of the red phosphors was found to be a tetragonal system. X-ray diffraction (XRD) results showed the (112) main diffraction peak centered at $2{\theta}=28.71^{\circ}$, and the size of crystalline particles exhibited an overall decreasing tendency according to the concentration of $Eu^{3+}$ ions. The excitation spectra of all the phosphors were composed of a broad band centered at 275 nm in the range of 230-310 nm due to $O^{2-}{\rightarrow}W^{6+}$ and a narrow band having a peak at 307 nm caused by $O^{2-}{\rightarrow}Eu^{3+}$. Also, the excitation spectrum presents several strong lines in the range of 305-420 nm, which are assigned to the 4f-4f transitions of the $Eu^{3+}$ ion. In the case of the emission spectrum, all the phosphor powders, irrespective of $Eu^{3+}$ ion concentration, indicated an orange emission peak at 594 nm and a strong red emission spectrum centered at 615 nm, with two weak lines at 648 and 700 nm. The highest red emission intensity occurred at x = 0.10 mol of Eu3+ ion concentration with an asymmetry ratio of 12.5. Especially, the presence of $Eu^{3+}$ in the $Ca_{1-1.5x}WO_4:{Eu_x}^{3+}$ shows very effective use of excitation energy in the range of 305-420 nm, and finally yields a strong emission of red light.

Synthesis and Biocompatibility of the Hydroxyapatite Ceramic Composites from Tuna Bone(II) - The Sintering Properties of Hydroxyapatite Treated with Wet Milling Process - (참치 뼈를 이용한 Hydroxyapatite 세라믹 복합체의 합성 및 생체 친화성(제2보)-습식법에 의한 Hydroxyapatite 소결체의 특성-)

  • Kim, Se-Kwon;Choi, Jin-Sam;Lee, Chang-Kook;Byun, Hee-Guk;Jeon, You-Jin;Lee, Eung-Ho
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.1000-1005
    • /
    • 1997
  • The properties of ceramics by solid-state reaction with hydroxyapatite[$Ca_{10}(PO_4)_6(OH)_2$], which was isolated from tuna bone by wet milling process were investigated. The bulk density $2.93g/cm^3$ at $1350^{\circ}C$ was close to the calculated density $3.21g/cm^3$. On X-ray measurements, the major phases were identified as hydroxyapatite at below $1300^{\circ}C$, but the whitlockite [$Ca_3(PO_4)_2$] phases were appeared due to a decomposition of hydroxyapatite with temperature. The microstructures of sintering specimens were shown as small closed pores between grain boundaries. The mean bending strength of the sintered hydroxyapatite by solid-state reaction is about 58 MPa and this value is higher than that of the articular cartilage maximum strength, 40MPa.

  • PDF