DOI QR코드

DOI QR Code

Synthesis and Luminescent Properties of Sm3+-doped GdVO4 Phosphors

Sm3+ 도핑된 GdVO4 형광체의 제조와 발광 특성

  • Cho, Shin-Ho (Department of Materials Science and Engineering, Silla University) ;
  • Cho, Seon-Woog (Department of Materials Science and Engineering, Silla University)
  • 조신호 (신라대학교 공과대학 신소재공학과) ;
  • 조선욱 (신라대학교 공과대학 신소재공학과)
  • Received : 2012.01.27
  • Accepted : 2012.03.17
  • Published : 2012.03.30

Abstract

$Gd_{1-x}VO_4:{Eu_x}^{3+}$ phosphor powders were synthesized with changing the concentration of $Sm^{3+}$ ion by using a solid-state reaction method. The crystal structures of all the phosphors were found to be a tetragonal system, composed of (200) diffraction peak centered at $24.76^{\circ}$, and the morphology of grains approached the spherical form with homeogenous size distribution when the concentration of $Sm^{3+}$ ion was 0.05 mol. As for the photoluminescence properties, all of the phosphor powders, irrespective of $Sm^{3+}$ ion concentration, indicated the yellow, orange, and red emission peaked at 565, 603, and 645 nm respectively. As the concentration of $Sm^{3+}$ ion increases, the intensity of excitation spectrum showed a decreasing tendency on the increase of Sm3+ ion concentration. The maximum excitation and emission spectra were observed and the symmetry ratio was 1.19 at 0.05 mol of $Sm^{3+}$ ion.

고상 반응법을 사용하여 $Sm^{3+}$ 이온의 함량비를 변화시키면서 $Gd_{1-x}VO_4:{Eu_x}^{3+}$ 형광체 분말을 합성하였다. 모든 형광체 시료의 결정 구조는 $24.76^{\circ}$에 중심을 갖는 (200) 주 회절 피크로 구성되는 정방정계이었으며, 결정 입자의 형상은 $Sm^{3+}$ 이온의 함량비가 0.05 mol일 때 구형에 근접하고 균일한 크기 분포를 나타내었다. 발광 특성의 경우에, $Sm^{3+}$ 이온의 함량비에 관계없이 모든 형광체 분말은 파장 565, 603, 645 nm에 피크를 갖는 각각 황색, 주황색, 적색 형광을 보였다. $Sm^{3+}$ 이온의 함량비가 증가함에 따라 흡수 스펙트럼의 세기는 감소하는 경향을 나타내었으며, $Sm^{3+}$ 이온의 함량비가 0.05 mol일 때 최대 흡수와 발광 스펙트럼이 관측되었고, 대칭비의 값은 1.19이었다.

Keywords

References

  1. D. S. Jo, Y. Y. Luo, K. Senthil, T. Masaki, and D. H Yoon, Opt. Mater. 33, 1190 (2011). https://doi.org/10.1016/j.optmat.2011.02.007
  2. S. Cho, J. Korean Vacuum Soc. 20, 176 (2011). https://doi.org/10.5757/JKVS.2011.20.3.176
  3. R. S. Yadav, R. K. Dutta, M. Kumar, and A. C. Pandey, J. Lumin. 129, 1078 (2009).
  4. A. H. Krumpel, E. Kolk, E. Cavalli, P. Boutinaud, M. Bettinelli, and P. Dorenbos, J. Phys.: Condens. Matter 21, 115503 (2009). https://doi.org/10.1088/0953-8984/21/11/115503
  5. S. Bar, H. Scheife, and G. Huber, Opt. Mater. 28, 681 (2006). https://doi.org/10.1016/j.optmat.2005.09.043
  6. X. Su, B. Yan, and H. Huang, J. Alloys Compd. 399, 251 (2005). https://doi.org/10.1016/j.jallcom.2005.03.059
  7. T. Minami, T. Miyata, Y. Suzuki, and Y. Mochizuki, Thin Solid Films 65, 469-470 (2004).
  8. X. Hu, J. Chen, N. Zhuang, J. Chen, J. Lan, and F. Yang, J. Cryst. Growth 256, 328 (2003). https://doi.org/10.1016/S0022-0248(03)01378-2
  9. Y. Zhou, J. Lin, and S. Wang, J. Solid State Chem. 171, 391 (2003). https://doi.org/10.1016/S0022-4596(02)00219-0
  10. V. R. Bandi, B. K. Grandhe, M. Jayasimhadri, K. Jang, H. S. Lee, S. S. Yi, and J. H. Jeong, J. Cryst. Growth 326, 120 (2011). https://doi.org/10.1016/j.jcrysgro.2011.01.075
  11. Y. Chen, H. K. Yang, J. W. Chung, B. K. Moon, H. Choi, and J. H. Jeong, J. Korean Phys. Soc. 57, 1760 (2010). https://doi.org/10.3938/jkps.57.1760
  12. T. P. Tang, C. M. Lee, and F. C. Yen, Ceram. Int. 32, 665 (2006). https://doi.org/10.1016/j.ceramint.2005.03.034
  13. G. S. R. Raju, J. S. Yu, J. Y. Park, H. C. Jung, and B. K. Moon, J. Am. Ceram. Soc. 95, 238 (2012). https://doi.org/10.1111/j.1551-2916.2011.04762.x
  14. B. S. Tsai, Y. H. Chang, and Y. C. Chen, Electrochem. Solid-State Lett. 8, H55 (2005).

Cited by

  1. Photoluminescence Properties of CaNb2O6:RE3+(RE= Sm, Eu) Phosphors vol.27, pp.7, 2014, https://doi.org/10.4313/JKEM.2014.27.7.477
  2. Synthesis and Emission Properties of Dy3+-doped BaMoO4Phosphors vol.22, pp.4, 2013, https://doi.org/10.5757/JKVS.2013.22.4.181
  3. Luminescent Characteristics and Synthesis of Sm3+-Doped CaWO4Phosphors vol.24, pp.7, 2014, https://doi.org/10.3740/MRSK.2014.24.7.339