DOI QR코드

DOI QR Code

The Effect of Speed of Deposited Atom on Growth Morphology

증착원자의 속력이 성장 지형에 미치는 영향

  • Seo, J. (Department of Ophthalmic Optics, Chodnag University) ;
  • Shim, H.S. (Department of Ophthalmic Optics, Gwangju Health College) ;
  • Kim, S.H. (Department of Ophthalmic Optics, Gwangju Health College)
  • 서지근 (초당대학교 안경광학과) ;
  • 심현석 (광주보건대학교 안경광학과) ;
  • 김상현 (광주보건대학교 안경광학과)
  • Received : 2012.02.13
  • Accepted : 2012.03.26
  • Published : 2012.03.30

Abstract

We have studied the effect of speed of deposited atom on morphology evolution during Glancing Angle Deposition (GLAD). Using Kinetic Monte Carlo simulation that incorporate molecular dynamics simulations, we have shown that the rough surface morphology became smoother as the speed of deposited atom is increased. The growth exponent ${\beta}$ change from 0.97 to 0.67 as the speed increase from ${\upsilon}_0$ to $10{\upsilon}_0$ in the case of GLAD. We also examined the effect of speed of deposited atom for the case of chemical vapor deposition (CVD) simulation. Compared to GLAD, the variation in scaling exponent ${\beta}$ is small but the speed of deposited atom also have considerable effect on growth morpholgy in the case of CVD.

기울어진 각도 증착(GLAD)에서 입사원자의 속력이 표면 지형에 미치는 영향 Molecular Dynamics와 결합한 Kinetic Monte Carlo 시뮬레이션을 통하여 증착원자의 속력이 증가함에 따라 거칠기가 줄어드는 완만한 표면이 형성되는 것을 확인하였다. GLAD 계산에서 증착원자 속력이 ${\upsilon}_0$에서 $10{\upsilon}_0$로 증가함에 따라 표면 지형을 대변하는 성장 지수 ${\beta}$값은 0.97에서 0.67로 감소하였다. 화학증기증착(CVD) 방법과 같은 증착 방법에 대해서도 증착원자의 속력 의존성을 고찰하였다. GLAD에 비해 지수 ${\beta}$값의 속력에 따른 차이는 적지만 CVD의 경우에도 증착원자의 속력이 표면 지형에 일정정도의 영향을 주는 것을 확인하였다.

Keywords

References

  1. Y. -L. He, H. -N. Yang, T. -M. Lu, and G. -C. Wang, Phys. Rev. Lett. 69, 3770 (1992). https://doi.org/10.1103/PhysRevLett.69.3770
  2. H. -N. Yang, Y. -P. Zhao, G. -C. Wang, and T. -M. Lu, Phys. Rev. Lett. 76, 3774 (1996). https://doi.org/10.1103/PhysRevLett.76.3774
  3. H. -N. Yang, G. -C. Wang, and T. -M. Lu, Phys. Rev. Lett. 73, 2348 (1994). https://doi.org/10.1103/PhysRevLett.73.2348
  4. C. Thompson, G. Palasantzas, Y. P. Feng, S. K. Sinha, and J. Krim, Phys. Rev. B 49, 4902 (1994). https://doi.org/10.1103/PhysRevB.49.4902
  5. H. -J. Ernst, F. Fabre, R. Folkerts, and J. Lapujoulade, Phys. Rev. Lett. 72, 112 (1994).
  6. H. You, R. P. Chiarello, H. K. Kim, and K. G. Vandervoort, Phys. Rev. Lett. 70, 2900 (1993). https://doi.org/10.1103/PhysRevLett.70.2900
  7. J. Wang, G. Li, P. Yang, M. Cui, X. Jiang, B. Dong, and H. Liu, Europhys. Lett. 42, 283 (1998). https://doi.org/10.1209/epl/i1998-00243-1
  8. T. Karabacak, Y. -P. Zhao, G. -C. Wang, and T. -M. Lu, Phys. Rev. B 64, 085325 (2001). https://doi.org/10.1103/PhysRevB.64.085325
  9. N. -E. Lee, David G. Cahill, and J. E. Greene, Phys. Rev. B 53, 7876 (1996). https://doi.org/10.1103/PhysRevB.53.7876
  10. M. Pelliccione, T. Karabacak, and T. -M. Lu, Phys. Rev. Lett. 96, 146105 (2006). https://doi.org/10.1103/PhysRevLett.96.146105
  11. M. Kondo, T. Ohe, K. Saito, T. Nishimiya, and A. Matsuda, J. Non-Cryst. Solids 227, 890 (1998). https://doi.org/10.1016/S0022-3093(98)00274-9
  12. F. Ojeda, R. Cuerno, R. Salvarezza, and L. Va'zquez, Phys. Rev. Lett. 84, 3125 (2000). https://doi.org/10.1103/PhysRevLett.84.3125
  13. L. Va'zquez, J. M. Albella, R. C. Salvarezza, A. J. Arvia, R. A. Levy, and D. Perese, Appl. Phys. Lett. 68, 1285 (1996). https://doi.org/10.1063/1.115954
  14. Y. -P. Zhao, Jason T. Drotar, G. -C. Wang, and T. -M. Lu, Phys. Rev. Lett. 82, 4882 (1999). https://doi.org/10.1103/PhysRevLett.82.4882
  15. D. Le Bellac, G. A. Niklasson, and C. G. Granqvist, Europhys. Lett. 32, 155 (1995). https://doi.org/10.1209/0295-5075/32/2/011
  16. J. T. Drotar, Y. -P. Zhao, T. -M. Lu, and G. -C. Wang, Phys. Rev. B 62, 2118 (2000); J. T. Drotar, Y. -P. Zhao, T. -M. Lu, and G. -C. Wang, Phys. Rev. B 64, 125411 (2001). https://doi.org/10.1103/PhysRevB.64.125411
  17. Y. -P. Zhao, Jason T. Drotar, G. -C. Wang, and T.-M. Lu, Phys. Rev. Lett. 87, 136102 (2001). https://doi.org/10.1103/PhysRevLett.87.136102
  18. T. Karabacak, H. Guclu, and M. Yuksel, Phys. Rev. B 79, 195418 (2009). https://doi.org/10.1103/PhysRevB.79.195418
  19. J. Seo, H. -Y. Kim, and J. -S. Kim, J. Phys. (cond. mat.) 19, 486001 (2007). https://doi.org/10.1088/0953-8984/19/48/486001
  20. Y. Shim, V. Borovikov, and J. G. Amar, Phys. Rev. B 77, 235423 (2008). https://doi.org/10.1103/PhysRevB.77.235423
  21. L. C. Jorritsma L. C., M. Bijnagte, G. Rosenfeld, and B. Poelsema, Phys. Rev. Lett. 78, 911(1997). https://doi.org/10.1103/PhysRevLett.78.911