• Title/Summary/Keyword: Solid-solid interface

Search Result 695, Processing Time 0.029 seconds

Interfacial Degradation Reaction between Cathode and Solid Electrolyte in All-Solid-State Batteries (고체전해질과 양극의 계면 열화 반응)

  • Jae-Hun Kim
    • Corrosion Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.334-342
    • /
    • 2024
  • The need for efficient and sustainable energy storage solutions has emerged due to a rapidly increasing energy demand and growing concerns about environmental issues. Among various energy storage methods, lithium secondary batteries are widely used in a variety of electronic devices such as smartphones, laptops, electric vehicles, and large-scale power storage systems due to their high energy density, long lifespan, and cost competitiveness. Recently, all-solid-state batteries (ASSBs) have attracted great attention because they can reduce the risk of fire associated with liquid electrolytes. Additionally, using high-capacity alternative anodes and cathodes in ASSBs can enhance energy density. However, ASSBs that use solid electrolytes experience a degradation in their electrochemical performances due to resistance at solid-solid interfaces. These interfaces can also result in poor physical contact and the presence of products formed from chemical and electrochemical reactions. Solving this interface problem is a critical issue for the commercialization of ASSBs. This review summarizes interfacial reactions between the cathode and solid electrolyte, along with research aimed at improving these interactions. Future development directions in this field are also discussed.

Analysis and Experiment on Cryogenic Refrigeration Using Solid Nitrogen (고체 질소를 이용한 극저온 냉동의 해석 및 실험)

  • 변정주;이윤숙;장호명
    • Progress in Superconductivity and Cryogenics
    • /
    • v.3 no.2
    • /
    • pp.77-83
    • /
    • 2001
  • The thermal characteristics of solid nitrogen are investigated by experiment and analysis for the purpose of evaluating its feasibility as a cooling medium for HTS (high T$_{c}$ superconductor) magnets. A cryostat to refrigerate a liquid-nitrogen container well below its freezing temperature with a 2-stage GM cryocooler is designed and constructed. The spatial distribution of temperature is measure as a function of time during the freezing and melting processes. from which the thermal diffusivity of solid nitrogen can be approximately calculated. the freezing process is formulated and solved by the integral method with an assumption of phase equilibrium at the solid-liquid interface and experimental observation. It may be concluded that the thermal diffusion in solid phase is much slower than in liquid and the degree of super-saturation is quite severe in the solidification of nitrogen.n.

  • PDF

Heat Transfer and Solidification in the Inviscid Stagnation Flow (비점성 정체 유동 하에서의 응고와 열전달)

  • Yoo Joo-Sik;Kim Yong-Jin
    • Journal of computational fluids engineering
    • /
    • v.5 no.1
    • /
    • pp.27-32
    • /
    • 2000
  • This study investigates the problem of phase change from liquid to solid in the inviscid stagnation flow. The instantaneous location of the solid-liquid interface is fixed for all times by a coordinate transformation. Finite difference method is used to obtain the solution of the unsteady problem, and the growth rate of solid and the transient heat transfer from the surfaces of solid are investigated. The transient solution is dependent on the three dimensionless parameters, but the final steady state is determined by only one parameter of temperature ratio/conductivity ratio. It is observed that the instantaneous heat flux at the surface of solid can be obtained with sufficient accuracy by measuring the thickness of the solid or vice versa.

  • PDF

FEM-BEM iterative coupling procedures to analyze interacting wave propagation models: fluid-fluid, solid-solid and fluid-solid analyses

  • Soares, Delfim Jr.
    • Coupled systems mechanics
    • /
    • v.1 no.1
    • /
    • pp.19-37
    • /
    • 2012
  • In this work, the iterative coupling of finite element and boundary element methods for the investigation of coupled fluid-fluid, solid-solid and fluid-solid wave propagation models is reviewed. In order to perform the coupling of the two numerical methods, a successive renewal of the variables on the common interface between the two sub-domains is performed through an iterative procedure until convergence is achieved. In the case of local nonlinearities within the finite element sub-domain, it is straightforward to perform the iterative coupling together with the iterations needed to solve the nonlinear system. In particular, a more efficient and stable performance of the coupling procedure is achieved by a special formulation that allows to use different time steps in each sub-domain. Optimized relaxation parameters are also considered in the analyses, in order to speed up and/or to ensure the convergence of the iterative process.

Characteristics of Composite Electrolyte with Graphene Quantum Dot for All-Solid-State Lithium Batteries (이종 계면저항 저감 구조를 적용한 그래핀 양자점 기반의 고체 전해질 특성)

  • Hwang, Sung Won
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.114-118
    • /
    • 2022
  • The stabilized all-solid-state battery structure indicate a fundamental alternative to the development of next-generation energy storage devices. Existing liquid electrolyte structures severely limit battery stability, creating safety concerns due to the growth of Li dendrites during rapid charge/discharge cycles. In this study, a low-dimensional graphene quantum dot layer structure was applied to demonstrate stable operating characteristics based on Li+ ion conductivity and excellent electrochemical performance. Transmission electron microscopy analysis was performed to elucidate the microstructure at the interface. The low-dimensional structure of GQD-based solid electrolytes has provided an important strategy for stable scalable solid-state lithium battery applications at room temperature. This study indicates that the low-dimensional carbon structure of Li-GQDs can be an effective approach for the stabilization of solid-state Li matrix architectures.

Natural Dye Extraction from Merbau (Intsia bijuga) Sawdust: Optimization of Solid-Solvent Ratio and Temperature

  • Aswati MINDARYANI;Ali SULTON;Felix Arie SETIAWAN;Edia RAHAYUNINGSIH
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.6
    • /
    • pp.481-492
    • /
    • 2023
  • The ecofriendly lifestyle has attracted considerable support for sustainable development. Natural dyes, as sustainable products, have become a research focus and development area for many scientists. Ecofriendly processing also supports circular sustainable development. This study effectively obtained tannins as a natural dye from merbau (Intsia bijuga) sawdust using water as an ecofriendly solvent. Merbau sawdust is an underutilized industrial waste. Temperature and solid-solvent ratio variations were performed to extract tannins from merbau sawdust. Temperature and solid-solvent ratio positively affected solution yield and tannin concentration. The optimal condition was identified using response surface methodology and experimental observations. A yield of 0.2217 g tannins/g merbau was obtained under the conditions of 333.15 K and 0.125 solid-solvent ratio. Extraction was controlled by convective mass transfer at the interface of solid particles.

Effect of Bonding Misfit on Single Crystallization of Transient Liquid Phase Bonded Joints of Ni Base Single Crystal Superalloy (단결정 Ni기 초내열합금 액상확산접합부 단결정화에 미치는 접합방위차의 영향)

  • 김대업
    • Journal of Welding and Joining
    • /
    • v.20 no.5
    • /
    • pp.93-98
    • /
    • 2002
  • The effect of bonding misfit on single crystallization of transient liquid phase (TLP) bonded joints of single crystal superalloy CMSX-2 was investigated using MBF-80 insert metal. The bonding misfit was defined by (100) twist angle (rotating angle) at bonded interface. TLP bonding of specimens was carried out at 1523K for 1.8ks in vacuum. The post-bond heat treatment consisted of the solution and sequential two step aging treatment was conducted in the Ar atmosphere. The crystallographic orientation analysis across the TLP bonded joints was conducted three dimensionally using the electron back scattering pattern (EBSP) method. EBSP analyses f3r the bonded and post bonded heat treated specimens were conducted. All bonded joints had misorientation centering around the bonded interface for as-bonded and post-bond heat treated specimens with rotating angle. The average misorientation angle between both solid phases in bonded interlayer was almost identical to the rotating angle at bonded interface. HRTEM observation revealed that the atom arrangement of both solid phases in bonded interlayer was quite different across the bonded interface. It followed that grain boundary was formed in bonded interface. It was confirmed that epitaxial growth of the solid phase occurred from the base metal substrates during TLP bonding and single crystallization could not be achieved in joints with rotating angle.

The Evaluation of Interface Shear Strength Between Geomembrane and Ceotextile (지오멤브레인/지오텍스타일의 접촉 전단강도 평가)

  • 서민우;박준범;김운영
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.1
    • /
    • pp.79-89
    • /
    • 2002
  • Various geosynthetics used as liners or protection layers are installed in the solid waste landfills. The interface shear strength between geosynthetics installed at the slope of the landfill is a very important variable for the safe design of the bottom and cover systems in the solid waste landfills. The interface shear strength between Geomembrane and Geotexile is estimated by a large direct shear test in this study, The effects of normal stress, water existing between geosynthetics and surface condition of Geomembrae, i.e. smooth or textured, were investigated. The test results show that the effect varied depending on the level of normal stress and the type of geosynthetic combinations. The shear strength was evaluated by the Mohr-Coulomb failure criterion in this research. The shear strength parameters obtained from tests considering the site specific conditions such as normal stress, dry or wet, and surface condition of geosynthetic should be applied to the design of geosynthetics installed at the slope of the landfill to construct a safe solid waste landfill.

Analysis of Ultrasonic Resonance Signal in Multi-Layered Structure (다중접착구조물의 초음파 공진 신호 분석)

  • Kim, Dong-Ryun;Kim, Jae-Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.4
    • /
    • pp.401-409
    • /
    • 2012
  • Ultrasonic testing are far superior to other nondestructive tests for detecting the disbond interface which occurred in adhesive interface. However, a solid rocket motor consisting of a steel case, rubber insulation, liner, and propellant poses many difficulties for analyzing ultrasonic waves because of the superposition of reflected waves and large differences in acoustic impedance of various materials. Therefore, ultrasonic tests for detecting the disbond interface in solid rocket motor have been applied in very limited areas between the steel case and rubber insulation using an automatic C-scan system. The existing ultrasonic test cannot detect the disbond interface between the liner and propellant of a solid rocket motor because most of the ultrasonic waves are absorbed in the rubber material which has low acoustic impedance. This problem could be overcome by analyzing the resonance frequency from the frequency spectrum using the ultrasonic resonance method. In this paper, a new technique to detect the disbond interface between the liner and propellant using ultrasonic resonance characteristics is discussed in detail.

Tracking of Evolving Solid-Fluid Interface Using Level set and MLS-based finite elements with variable nodes (MLS기반 변절점 유한요소 및 레벨셋 방법을 이용한 고체-유체 경계의 전산모사)

  • Lim, Jae-Hyuk;Cho, Young-Sam;Im, Se-Young
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.416-418
    • /
    • 2004
  • Tracking of evolving solid-fluid interfaces is treated using level set method and MLS-based finite element with variable nodes. Several applications will be illustrated to demonstrate the effectiveness of the present scheme

  • PDF