• Title/Summary/Keyword: Solid-State Synthesis

Search Result 357, Processing Time 0.031 seconds

Synthesis of high functional Superconducting Precursor using Organic metal salts method for Electric power transmission (유기금속염을 이용한 고효율 전력 전송용 초전도 전구체 합성)

  • Lee, Sang-Heon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.270-271
    • /
    • 2005
  • A high Tc superconducting with a nominal composition of $Bi_2Sr_2Ca_2Cu_3O_Y$ was prepared by the citarte method. The solid precursor produced by the dehydration of the gel at $120^{\circ}C$ for 12h is not in the amorphous state as expected but in a crystalline state. X-ray diffraction peaks of nearly the same angular position as the peaks of high Tc phase were observed in the precursor. After pyrolysis at $400^{\circ}C$ and calcination at $840^{\circ}C$ for 4h, the (001)peak of the high Tc phase was cleary observed. Experimental results suggest that the intermediate phase formed before the formation of the superconducting phase may be the most important factro in determining whether it is easy to form the high Tc phase or not. because the nucleation barriers of the two superconducting phase may be altered by the variation of the crystal structures of those intermediate phase.

  • PDF

Synthesis and Biocompatibility of the Hydroxyapatite Ceramic Composites from Tuna Bone(I) - The Sintering Properties of Hydroxyapatite and Hydroxyapatite- Containing Wollastonite Crushed with Dry Milling Process - (참치 뼈를 이용한 Hydroxyapatite 세라믹 복합체의 합성 및 생체 친화성(제1보)-건식법으로 분쇄한 Hydroxyapatite 및 Wollastonite가 첨가된 소결체의 특성-)

  • Kim, Se-Kwon;Lee, Chang-Kook;Byun, Hee-Guk;Jeon, You-Jin;Lee, Eung-Ho;Choi, Jin-Sam
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.994-999
    • /
    • 1997
  • The sintering properties of hydroxyapatite isolated from tuna bone and hydroxyapatite-containing wollastonite sintered by solid-state reaction was investigated. As the sinterability of hydroxyapatite dependent upon the particle size by dry milling, it showed a sintering. But the hydroxyapatite-containing wollastonite was appeared good sinterability. On X-ray measurements, the major phases of hydroxyapatite-containing wollastonite by solid state reaction at $1250^{\circ}C$ were identified as hydroxyapatite and pseudowollastonite(${\alpha}-CaSiO_3$). And the phases appeared as whitlockite [$Ca_3(PO_4)_2$] by decomposition of hydroxyapatite at higher temperature above $1250^{\circ}C$. The shapes of microstructure on SEM images changed from porous to dense bulk by elevating temperature. The mean bending strength of hydroxyapatite-containing wollastonite sintered by solid-state reaction at $1300^{\circ}C$ was about 18 MPa, it was close to the cancellous bone's maximum strength, 20 MPa.

  • PDF

Solid-state synthesis of yttrium oxyfluoride powders and their application to plasma spray coating (옥시불화이트륨 분말의 고상합성 및 플라즈마 스프레이 코팅 적용)

  • Lee, Jung-Il;Kim, Young-Ju;Chae, Hui Ra;Kim, Yun Jeong;Park, Seong Ju;Sin, Gyoung Seon;Ha, Tae Bin;Kim, Ji Hyeon;Jeong, Gu Hun;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.6
    • /
    • pp.276-281
    • /
    • 2021
  • In order to manufacture a semiconductor circuit, etching, cleaning, and deposition processes are repeated. During these processes, the inside of the processing chamber is exposed to corrosive plasma. Therefore, the coating of the inner wall of the semiconductor equipment with a plasma-resistant material has been attempted to minimize the etching of the coating and particle contaminant generation. In this study, we synthesized yttrium oxyfluoride (YOF) powder by a solid-state reaction using Y2O3 and YF3 as raw materials. Mixing ratio of the Y2O3 and YF3 was varied from 1.0:1.0 to 1.0:1.6. Effects of the mixing ratio on crystal structure and microstructure of the synthesized YOF powder were investigated using XRD and FE-SEM. The synthesized YOF powder was successfully applied to plasma spray coating process on Al substrate.

EFFECT OF SOYBEAN EXTRUSION ON NITROGEN METABOLISM, NUTRIENT FLOW AND MICROBIAL PROTEIN SYNTHESIS IN THE RUMEN OF LAMBS

  • Ko, J.Y.;Ha, J.K.;Lee, N.H.;Yoon, C.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.3
    • /
    • pp.571-582
    • /
    • 1992
  • Soybeans were dry extruded at three different temperatures (125, 135 and $145^{\circ}C$) for 30 s. Four lambs fitted with cannulae in the rumen and abomasums were used in a balanced $4{\times}4$ Latin square design. Lambs were fed at 2 h intervals for 12 times a day with automatic feeder to maintain steady state conditions in digestive tract. A dual-phase marker system was used to estivate ruminal flow rate of both liquid and solid digesta. Objectives of this study were to determine the effect of extrusion temperature of raw soybean on the ruminal liquid and solid dilution rate, nitrogen digestion and flow at the abomasum and availability of amino acid in lambs. There were no significant effects of extrusion on liquid and solid dilution rate, and liquid volume. Ruminal liquid flow rate was not influenced by extrusion and ranged from 389 to 435 ml/hr. Extrusion had no influence on ruminal OM digestion and flow rate to the abomasums. Dietary N flow to the abomasums increased (p < 0.05) as extruding temperature increased. Extruding temperature had a significant effect (p < 0.05) on flow of N escaping ruminal degradation and ranged from 34.91 to 57.38%. Microbial N synthesized/kg OMTDR ranged from 27 to 37 g and highest with $145^{\circ}C$ ESB diet. Extrusion decreased the amount of degradable amino acid in the rumen and increased the supply of amino acid to the lower gut, especially with 135 and $145^{\circ}C$ ESB diets.

Carbothermal Reduction of Spray Dried Titanium-Cobalt-Oxygen Based Oxide Powder by Solid Carbon (분무건조법에 의해 제조된 Ti-Co-O계 산화물 분말의 고체 탄소에 의한 환원/침탄)

  • 이길근;문창민;김병기
    • Journal of Powder Materials
    • /
    • v.11 no.1
    • /
    • pp.28-33
    • /
    • 2004
  • In the present study, the focus is on the analysis of carbothermal reduction of the titanium-cobalt-oxygen based oxide powder by solid carbon for the optimizing synthesis process of ultra fined TiC/Co composite powder. The titanium-cobalt-oxygen based oxide powder was prepared by the combination of the spray drying and desalting processes using the titanium dioxide powder and cobalt nitrate as the raw materials. The titanium-cobalt-oxygen based oxide powder was mixed with carbon black, and then this mixture was carbothermally reduced under a flowing argon atmosphere. The changes in the phase structure and thermal gravity of the mixture during carbothermal reduction were analysed using XRD and TGA. The synthesized titanium-cobalt-oxygen based oxide powder has a mixture of $TiO_2$ and $CoTiO_3$. This oxide powder was transformed to a mixed state of titanium car-bide and cobalt by solid carbon through four steps of carbothermal reduction steps with increasing temperature; reduction of $CoTiO_3$ to $TiO_2$ and Co, reduction of $TiO_2$, to the magneli phase($Ti_nO_{2n-1}$, n>3), reduction of the mag-neli phase($Ti_nO_{2n-1}$, n>3) to the $Ti_nO_{2n-1}$(2$\leq$n$\leq$3) phases, and reduction and carburization of the $Ti_nO_{2n-1}$(2$\leq$n$\leq$3) phases to titanium carbide.

Effects of Elemental Powder Particle Size and Shape on the Synthesis of Ni Silicides by Mechanical Alloying (기계적 합금화에 의한 Ni Silicide 분말의 합성에 미치는 원소 분말의 입도 및 형상의 영향)

  • 변창선
    • Journal of Powder Materials
    • /
    • v.6 no.3
    • /
    • pp.215-223
    • /
    • 1999
  • The synthesis of $Ni_5Si_2,\;Ni_2Si$ and NiSi has been investigated by mechanical alloying (MA) of Ni-27.9at%Si, Ni-33.3at%Si and Ni-50.0at%Si powder mixtures. As-received and premilled elemental powders were subjected to MA. The as-received Ni powder was spherical and the mean particle size 48.8$\mu$m, whereas the premilled Ni powder was flaky and the mean particle diameter and thickness were found to be 125 and 5$\mu$m, respectively. The mean surface area of the premilled Mi powder particle was 3.5 times as large as that of the as-received Ni powder particle. The as-received Si powder was was 10.0$\mu$m. Self-propagating high-temperature synthesis (SHS) reaction, followed by a slow reaction (a solid state diffusion), was observed to produce each Ni silicide during MA of the as-received elemental powders. In other word , the reactants and product coexisted for a long period of MA of time. Only SHS reaction was, however, observed to produce each Ni silicide during MA of the premilled elemental powders, indicating that each Ni sillicide formed rather abruptly at a short period of MA time. The mechanisms and reaction rates for the formation of the Ni silicides appeared to be influenced by the elemental powder particle size and shape as well as the heat of formation of the products $(Ni_5Si_2$longrightarrow-43.1kJ/mol.at., $Ni_2Si$$\rightarrow$-47.6kJ/mol.at.).

  • PDF

Size Tailored Nanoparticles of ZrN Prepared by Single-Step Exothermic Chemical Route

  • Lee, Sang-Ki;Park, Kyung-Tae;Ryu, Hong-Youl;Nersisyan, Hayk H.;Lee, Kap-Ho;Lee, Jong-Hyeon
    • Korean Journal of Materials Research
    • /
    • v.22 no.5
    • /
    • pp.243-248
    • /
    • 2012
  • ZrN nanoparticles were prepared by an exothermic reduction of $ZrCl_4$ with $NaN_3$ in the presence of NaCl flux in a nitrogen atmosphere. Using a solid-state combustion approach, we have demonstrated that the zirconium nitride nanoparticles synthesis process can be completed in only several minutes compared with a few hours for previous synthesis approaches. The chemistry of the combustion process is not complex and is based on a metathesis reaction between $ZrCl_4$ and $NaN_3$. Because of the low melting and boiling points of the raw materials it was possible to synthesize the ZrN phase at low combustion temperatures. It was shown that the combustion temperature and the size of the particles can be readily controlled by tuning the concentration of the NaCl flux. The results show that an increase in the NaCl concentration (from 2 to 13 M) results in a temperature decrease from 1280 to $750^{\circ}C$. ZrN nanoparticles have a high surface area (50-70 $m^2/g$), narrow pore size distribution, and nano-particle size between 10 and 30 nm. The activation energy, which can be extracted from the experimental combustion temperature data, is: E = 20 kcal/mol. The method reported here is self-sustaining, rapid, and can be scaled up for a large scale production of a transition metal nitride nanoparticle system (TiN, TaN, HfN, etc.) with suitable halide salts and alkali metal azide.

The Study of $K_2O-MgO-Al_2O_3-SiO_2-MgF_2$ System in Fluro-phlogopite Synthesis. (불소운모 합성에 따른 $K_2O-MgO-Al_2O_3-SiO_2-MgF_2$계의 연구)

  • 송경근;오근호;김대웅
    • Journal of the Korean Ceramic Society
    • /
    • v.20 no.1
    • /
    • pp.37-42
    • /
    • 1983
  • An attempt was made to derive a possible synthetic mechanism of Fluoro-phlogopite (Mica, 4Mg.$Al_2O_3$.$6SiO_2$.$K_2O$.$2MgF_2$) The pevention of fluorine vaporization turned out to be the key in the synthesis of Mica in question.l Consequently the quinary system of Mica was seperately synthesized ; frist 4MgO.$Al_2O_3-6SiO_2$(ternary system) was sintered at 135$0^{\circ}C$ and $K_2O$ and $MgF_2$ were added and second 4MgO.$Al_2O_3-6SiO_2$.$K_2O$ (quarternary system) was heat-treated at 135$0^{\circ}C$ and $MgF_2$ was added. The ternary system resulted in Proto-enstatite Cordierite and Spinel phases while Forsterite and Leucite were shown in the quarternay system . In both methods Fluoro-phlogopite was systhesized but the solid state reactions to form Mica from the ternary system and the quarternary system were different. High temperature reactions in the formation of Mica were investigated employing XRD, DTA and SEM The study of the synthesis of Mica indirectly suggested a method of phase analysis of quinary system(MgO-$Al_2O_3-SiO_2-K_2O-MgF_2$) and quarternary system(MgO-$Al_2O_3-SiO_2-K_2O-MgF_2$) at various temperatures.

  • PDF

Synthesis and characterization of thermally stable pink-red inorganic pigment for digital color (디지털 컬러용 pink-red 고온발색 무기안료의 합성 및 특성평가)

  • Lee, Won-Jun;Hwang, Hae-Jin;Kim, Jin-Ho;Cho, Woo-Suk;Han, Kyu-Sung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.4
    • /
    • pp.169-175
    • /
    • 2014
  • Digital ink-jet printing system has many advantages such as fast and fine printing of various images, high efficiency and low cost process. Generally digital ink-jet printing requires ceramic pigments of cyan, magenta, yellow and black with thermal and glaze stability above $1000^{\circ}C$ for the application of porcelain product design. In this study, pink-red colored $CaO-SnO_2-Cr_2O_3-SiO_2$ pigment was synthesized using solid state reaction. The synthesis conditions of $Ca(Cr,Sn)SiO_5$ pigment such as annealing temperature, amount of mineralizer and non-stoichiometric composition were optimized. Crystal structure and morphology of the obtained $Ca(Cr,Sn)SiO_5$ pigment were analyzed using XRD, SEM, PSA, FT-IR and effect of Cr substitution on the pigment color was analyzed using Uv-vis. spectrophotometer and CIE $L^*a^*b^*$ measurement.

Synthesis of Yba2Cu3O7-y Superconductor using a Low Purity BaCO3 Powder (저 순도 BaCO3 분말을 사용한 Yba2Cu3O7-y 초전도체의 합성)

  • Kim, Chan-Joong;Park, Soon-Dong;Choi, Jung-Suk;Jun, Byung-Hyuk;Moon, Jong-Baik;Lee, Sang-Heon;Sung, Tae-Hyun
    • Journal of Powder Materials
    • /
    • v.15 no.1
    • /
    • pp.6-12
    • /
    • 2008
  • [ $YBa_2Cu_3O_{7-y}$ ](123) powders were synthesized by the solid state reaction method using two different purity $BaCO_3$ powders (99.75% and 99.7% purity) and $Y_2O_3$ (99.9%) and CuO (99.9%) powders. The effect of $BaCO_3$ purity on the formation of a 123 phase and the superconducting properties were investigated. The mixtures of raw powders were calcined at temperature ranges of $800^{\circ}C-880^{\circ}C$ in air and finally made into a single grain samples by a melt processing with top seeding. It was found that a 123 phase was well formed at temperature above $870^{\circ}C$, but the purity effect on the 123 formation was negligible. The single-grain 123 samples prepared from the different $BaCO_3$ powders showed the same $T_c$ value of 90.5 K and similar $J_c$ values about $10^4\;A/cm^2$ at 0 T and 77 K, and $10^3\;A/cm^2$ at 2 T and 77 K. This result indicates that the low purity, cheap price $BaCO_3$ powder can be used as a raw material for the fabrication of single-grain, high-$J_c$ superconducting levitator.