• 제목/요약/키워드: Solid-State Diffusion Bonding

검색결과 14건 처리시간 0.022초

Ti-6Al-4V합금의 고상 확산접합에 관한 연구 (A Study on the Solid State Diffusion Bonding of Ti-6Al-4V Alloy)

  • 강호정;강춘식
    • Journal of Welding and Joining
    • /
    • 제15권6호
    • /
    • pp.32-40
    • /
    • 1997
  • Solid state diffusion bonding is the joining process performed by creep and diffusion, which is accelerated by heating below melting temperature and proper pressing, in vacuum or shielding gas atmosphere. By this process we can obtain sufficient joint which can't be expected from the fusion welding. For Ti-6Al-4V alloy, the optimum solid state diffusion bonding condition and mechanical properties of the joint were found, and micro void morphology at bond interface was observed by SEM. The results of tensile test showed sufficient joint, whose mechanical properties are similar to that of base metal. 850$^{\circ}$C, 3MPa is considered as the optimum bonding condition. Void morphology at interface is long and flat at the initial stage. As the percentage of bonded area increases, however, small and round voids are found. Variation of void shape can be explained as follows. As for the void shrinkage mechanism, at the initial stage, power law creep is the dominant, but diffusion mechanism is dominant when the percentage of bonded area is increased.

  • PDF

A$_2$O$_3$세라믹과 Ni-Cr-Mo鋼과의 인서트 合金을 이용한 擴散接合에 關한 硏究 (A study on the diffusion bonding of the $Al_2$O$_3$ ceramics to metal)

  • 김영식;박훈종;김정일
    • Journal of Welding and Joining
    • /
    • 제10권3호
    • /
    • pp.63-72
    • /
    • 1992
  • The joining methods of ceramics to metals which can be expected to obtain high temperature strength are mainly classified into the solid-state diffusion bonding method and the active brazing method. Between these two, the solid-state diffusion bonding method is given attentions as substituting method for active brazing method due to being capable of obtaining higher bonding strength at high temperature and accurate bonding. In this paper, the solid-state diffusion bonding of $Al_{2}$O$_{3}$ ceramics to Ni-Cr-Mo alloy steel (SNCM21) using insert metal was carried out. The insert metal employed in this study was experimentally home-made, Ag-Cu-Ti alloy. Influence of several bonding parameters of $Al_{2}$O$_{3}$SNCM21 joint was quantitatively evaluated by bonding strength test, and microstructural analyses at the interlayer were performed by SEM/EDX. From above experiments, the optimum bonding condition of the solid-state diffusion bonding of $Al_{2}$O$_{3}$/SNCM21 using Ag-Cu-Ti insert metal was determined. Futhermore, high temperature strength and thermal-shock properties of $Al_{2}$O$_{3}$/SNCM21 joint were also examined. The results obtained are as follows. 1. The maximum bonding strength was obtained at the temperature of 95% melting point of insert metal. 2. The high temperature strength of $Al_{2}$O$_{3}$/SNCM21 joint appeared to bemaximum value at test temperature 500.deg.C and the bonding strength with increasingtemperature showed parabolic curve. 3. The strength of thermal-shocked specimens was far deteriorated than those of as-bonded specimens. Especially, water-quenched specimen after heated up to 600.deg. C was directly fractured in quenching.

  • PDF

Rene80/B/Rene80계의 액상확산 접합과정 -B분말 도포법을 이용한 액상확산접합 (Liquid Phase Diffusion Bonding Procedure of Rene80/B/Rene80 System -Liquid Phase Diffusion Bonding Using B Powder Coating Method)

  • 정재필;강춘식
    • Journal of Welding and Joining
    • /
    • 제13권2호
    • /
    • pp.132-138
    • /
    • 1995
  • Rene80 superalloy was liquid phase diffusion bonded by using boron(B) as an insert material, where B has high diffusivity and higher melting point as an insert material. Bonding procedure and bonding mechanism of Rene80/B/Rene80 joint were investigated. As results, liquid metal was produced by solid state reaction between base metal and insert material on bonding zone. The liquid metal was produced preferentially at the grain boundary. Except for production of liquid metal, other bonding procedure was nearly same as TLP(Transient Liquid Phase) bonding. Bonding time, however, was reduced compared to prior result of TLP bonding. By bonding S.4ks at l453K, Ren80/B/Rene80 joint was isothermally solidified and homogenized where thickness of insert material was 7.5.mu.m.

  • PDF

Evaluation for Al/Cu bonding by liquefaction after solid phase diffusion in the air

  • Kawakami, Hiroshi;Suzuki, Jippei;Fujiwara, Masanori;Nakajima, Junya;Kimura, Keiko
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2005년도 춘계학술발표대회 개요집
    • /
    • pp.393-395
    • /
    • 2005
  • The bonding for Aluminum and Copper in the air is investigated in this study. This bonding method does not include the special process of removing aluminum oxide films. In case of this bending, each metal Is heated at bonding temperature where is above eutectic temperature of Al-Cu system and below melting point of Aluminum. The liquefaction around the bonding surface occurs after the diffusion at solid state of each metal. This phenomenon is predicted by the temperature range above eutectic temperature of Al-Cu equilibrium phase diagram.

  • PDF

통전압접을 활용한 알루미늄 소재 간 고상접합에 관한 연구 (Study on Electrically Assisted Pressure Solid State Joining Between Aluminum Alloys)

  • 최호욱;이시환;김이재;홍성태;한흥남
    • 소성∙가공
    • /
    • 제31권6호
    • /
    • pp.337-343
    • /
    • 2022
  • Electrically assisted pressure joining (EAPJ) utilizes electric current-induced kinetic enhancement to achieve solid state diffusion bonding within a short time. In this study, aluminum alloy specimens, which are known as a hard-to-weld metal, were successfully solid-state joined through EAPJ. The bonding process was performed in two ways: continuous direct current (CDC), which applies relatively low current density, and pulsed direct current (PDC), which applies high current density. It was observed that the bonding strength was higher in PDC than in CDC. The microstructure of the joint was characterized using 3D X-ray microscopy (XRM) and electron backscatter diffraction (EBSD).

저온 Cu/Ag-Ag/Cu 본딩에서의 Ag 나노막 효과 (Effect of Ag Nanolayer in Low Temperature Cu/Ag-Ag/Cu Bonding)

  • 김윤호;박승민;김사라은경
    • 마이크로전자및패키징학회지
    • /
    • 제28권2호
    • /
    • pp.59-64
    • /
    • 2021
  • 차세대 반도체 기술은 이종소자 집적화(heterogeneous integration)를 이용한 시스템-인-패키징(system-inpackage, SIP) 기술로 발전하고 있고, 저온 Cu 본딩은 SIP 구조의 성능 향상과 미세 피치 배선을 위해서 매우 중요한 기술이라 하겠다. 본 연구에서는 porous한 Ag 나노막을 이용하여 Cu 표면의 산화 방지 효과와 저온 Cu 본딩의 가능성을 조사하였다. 100℃에서 200℃의 저온 영역에서 Ag가 Cu로 확산되는 것보다 Cu가 Ag로 확산되는 것이 빠르게 관찰되었고, 이는 저온에서 Ag를 이용한 Cu간의 고상 확산 본딩이 가능함을 나타내었다. 따라서 Ag 나노막을 이용한 Cu 본딩을 200℃에서 진행하였고, 본딩 계면의 전단 강도는 23.27 MPa로 측정되었다.