• Title/Summary/Keyword: Solid-Gas Reaction

Search Result 270, Processing Time 0.032 seconds

Hexagonal shape Si crystal grown by mixed-source HVPE method (혼합소스 HVPE 방법에 의해 성장된 육각형 Si 결정)

  • Lee, Gang Seok;Kim, Kyoung Hwa;Park, Jung Hyun;Kim, So Yoon;Lee, Ha Young;Ahn, Hyung Soo;Lee, Jae Hak;Chun, Young Tea;Yang, Min;Yi, Sam Nyung;Jeon, Injun;Cho, Chae Ryong;Kim, Suck-Whan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.3
    • /
    • pp.103-111
    • /
    • 2021
  • Hexagonal shape Si crystals were grown by the mixed-source hydride vapor phase epitaxy (HVPE) method of mixing solid materials such as Si, Al and Ga. In the newly designed atmospheric pressure mixed-source HVPE method, nuclei are formed by the interaction between GaCln, AlCln and SiCln gases at a high temperature of 1200℃. In addition, it is designed to generate a precursor gas with a high partial pressure due to the rapid reaction of Si and HCl gas. The properties of hexagonal Si crystals were investigated through scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), high-resolution X-ray diffraction (HR-XRD), and Raman spectrum. From these results, it is expected to be applied as a new material in the Si industry.

The Effect of Structure and Acidity of Fluorinated HZSM-5 on Ethylene Aromatization (불소화 HZSM-5의 구조 및 산도가 에틸렌 방향족화에 미치는 영향)

  • Kyeong Nan, Kim;Seok Chang, Kang;Geunjae, Kwak
    • Applied Chemistry for Engineering
    • /
    • v.34 no.1
    • /
    • pp.15-22
    • /
    • 2023
  • Recent studies have actively investigated ways to improve the economic feasibility and efficiency of the Fischer-Tropsch process by increasing the yields of the monocyclic aromatic compounds (BTEX). In this study, ethylene was selected as a model of F-T-derived hydrocarbons, and the ethylene-to-aromatics (ETA) reaction was investigated according to changes in acid characteristics, mesopores, and crystallinity of HZSM-5 (HZ5). Fluorinated HZ5 was prepared by calcination followed by impregnation of an aqueous NH4F solution having different molar concentrations in HZ5, and the structural and chemical properties of F/HZ5 were investigated through Brunauer-Emmett-Teller (BET), solid-state nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy (XPS), NH3-temperature-programmed desorption (TPD), and pyridine-IR spectroscopy. The ETA reactions were performed at 673 K under 0.1 MPa, and fluorinating HZ5 by an aqueous NH4F solution of 0.17 M improved ethylene conversion, BTEX selectivity, and catalytic stability due to acidity, mesopore fraction, and crystallinity.

Effects of Mn- and K-addition on Catalytic Activity of Calcium Oxide for Methane Activation (메탄 활성화반응에서 산화칼슘 촉매의 활성에 대한 망간과 칼륨의 첨가효과)

  • Park, Jong Sik;Kong, Jang Il;Jun, Jong Ho;Lee, Sung Han
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.6
    • /
    • pp.618-628
    • /
    • 1998
  • Pure CaO, Mn-doped CaO, Mn/CaO, and K/CaO catalysts were prepared and tested as catalysts for the oxidative coupling of methane in the temperature range of 600 to 800$^{\circ}C$ to investigate the effects of Mn- and K-addition on the catalytic activity of calcium oxide. To characterize the catalysts, X-ray powder diffraction(XRD), XPS, SEM, DSC, and TG analyses were performed. The catalytic reaction was carried out in a single-pass flow reactor using on-line gas chromatography system. Normalized reaction conditions were generally $p(CH_4)/p(O_2)=250$ Torr/50 Torr, total feed flow rate=30 mL/min, and 1 atm of total pressure with He being used as diluent gas. Among the catalysts tested, 6.3 mol% Mn-doped CaO catalyst showed the best $C_2$ yield of 8.0% with a selectivity of 43.2% at 775$^{\circ}C$. The $C_2$ selectivity increased on lightly doped CaO catalysts, while decreased on heavily doped CaO([Mn] > 6.3 mol%) catalysts. 6 wt.% Mn/CaO and 6 wt.% K/CaO catalysts showed the $C_2$ selectivities of 13.2% and 30.9%, respectively, for the reaction. Electrical conductivities of CaO and Mn-doped CaO were measured in the temperature range of 500 to 1000$^{\circ}C$ at Po2's of $10^{-3}\; to\;10^{-1}\;atm.$ The electrical conductivity was decreased with Mn-doping and increased with increasing $P0_2$in the range of $10^{-3}\;to\;10^{-1}\;atm,$ indicating the specimens to be p-type semiconductors. It was suggested that the interstitial oxygen ions formed near the surface can activate methane and the formation of interstitial oxygen ions was discussed on the basis of solid-state chemistry.

  • PDF

Synthesis and luminescent properties of a new green $CaZrO_3:\;HO_{3+}$ long persistent phosphors (녹색 발광의 $CaZrO_3:\;HO_{3+}$ 축광성 형광체의 합성 및 발광 특성)

  • Park, Byeong-Seok;Choi, Jong-Keon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.3
    • /
    • pp.109-114
    • /
    • 2008
  • Novel green long persistent phosphors of $CaZrO_3$ : $HO_{3+}$ have been synthesized at high temperature with weak reduction atmosphere by traditional solid state reaction method. The role of $H_3BO_3$ as flux and the suitable concentration of Ho as activator on the $CaZrO_3$ : $HO_{3+}$ long persistent phosphors has been investigated. Crystals of $HO_{3+}$ doped $CaZrO_3$ long persistent phosphores were characterized by fluorescence spectrophotometer and photoluminescence (PL). The main emission spectra of 546 nm peak was revealed through synthesizing at high temperature in $N_2$ gas atmosphere. The after glow emission spectra of $CaZrO_3$ : $HO_{3+}$ long persistent phosphores arise at 546 nm peak of narrow range. because that revealed pure green color. Green long persistent phosphors have been observed in the system for over 5 h after UV irradiation (254 nm). The main emission peak was ascribed to $HO_{3+}$ ions transition from $^5F_4$, $^5S_2{\to}^5I_3$, and the after glow may be ascribed to the trap centers in the $CaZrO_3$ host lattice.

EPR SPECTRA OF Mn ION WITH TWO PHASES IN THE Y-Ba-Cu-Mn-O HIGH Tc SUPERCONDUCTOR

  • Kim, Seon-Ok;Rudowicz, Czeslaw;Lee, Soo-Hyung;Yu, Seong-Cho
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.782-785
    • /
    • 1995
  • In this paper, $Mn^{2+}$ ion was doped in Y-Ba-Cu-O as an EPR probe. The following samples were prepared by conventional solid-state reaction method : $YBa_{2}Cu_{2.96}Mn_{0.04}O_{7-\delta}$ (MN-I), annealed $YBa_{2}Cu_{2.96}Mn_{0.04}O_{7-\delta}$ (AMN) and $YBa_{2}Cu_{2.94}Mn_{0.06}O_{7-\delta}$ (MN-II). AMN sample was obtained from MN-I by annealing for 1 hr under the Ar gas atmosphere at $600^{\circ}C$. X-band (~9.05 GHz) EPR spectra were measured from 103 K to room temperature by employing a JES-RE3X spectroscopy with a $TE_{0.11}$ cylindrical cavity and 100 kHz modulation frequency. In MN-I we have observed only the $Cu^{2+}$ signal. The fact that no $Mn^{2+}$ signal was observed, in spite of $Mn^{2+}$ being a very sensitive EPR probe, indicates that most likely isolated $Mn^{2+}$ ions don't exist in the MN-I sample. Most probably $Mn^{2+}$ ions in the MN-I sample interact antiferromagnetically and hence are EPR silent. The AMN spectra of at room temperature and 103 K indicate not only the $Cu^{2+}$ signal but also an extra signal, which increases with decreasing temperature. It is suggested that the extra signal originates from Mn ions that were antiferromagnetically coupled before the annealing process. In MN-II, from 103 K to room temperature, also, the extra signal was observed together with the $Cu^{2+}$ signal. The extra signal in MN-II, however, decreases with decreasing temperature and nearly disappears at 103 K. The signal originates from Mn ions in impurity phases that include $Mn^{2+}$ ions. We suppose that there exist at least two $Mn^{2+}$ doped phases in Y-Ba-Cu-O. The $Mn^{2+}$ signal of one phase is undectable at all temperature and that of another phase decreases with decreasing temperature and disappears around 103 K.

  • PDF

Characteristics of RDF Char Combustion in a Bubbling Fluidized Bed (기포 유동층 내에서 RDF 촤의 연소 특성)

  • Kang, Seong-Wan;Kwak, Yeon-Ho;Cheon, Kyoung-Ho;Park, Sung Hoon;Jeon, Jong-Ki;Park, Young-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.22 no.4
    • /
    • pp.429-432
    • /
    • 2011
  • The feasibility of applications of the char obtained from a gasification process of municipal-waste refuse derived fuel (RDF) as an auxiliary fuel was evaluated by combustion experiments. The higher heating value of the RDF char was 3000~4000 kcal/kg and its chlorine content was below the standard requirement demonstrating its potential as an auxiliary fuel. In the combustion exhaust gas, the maximum $NO_x$ and $SO_2$ concentrations were 240 ppm and 223 ppm, respectively. If an aftertreatment is applied, it is possible to control their concentrations low enough to meet the air pollutant emission standard. The HCl concentration was relatively high indicating that a care should be taken for HCl emission from the combustion of RDF. Based on the temperature distribution within the reactor, the concentration change of $O_2$ and $CO_2$, and the amount and the loss on ignition of solid residue, it was inferred that the combustion reaction was the most reliable when the excess air ratio of 1.3 was used.

Determination of Thermoluminescence Properties of MgB4O7 Doped with Dy3+, La3+ and Ho3+ for a Light Tracer Application (비화공식 예광탄 응용을 위한 Dy3+, La3+ 그리고 Ho3+이 도핑된 MgB4O7의 열 발광 특성 분석)

  • Park, Jinu;Kim, Nakyung;Choi, Jiwoon;Koh, Jaehyuk;Chin, Hee Sik;Jung, Duck Hyeong;Shin, Byungha
    • Korean Journal of Materials Research
    • /
    • v.32 no.1
    • /
    • pp.9-13
    • /
    • 2022
  • Bullets flying with a light from the back are called "tracers". Tracers are ignited by the combustion gas of the propellant and emit bright light that allows the shooter to visually trace the flight path. Therefore, tracers mark the firing point for allies to assist shooters to hit target quickly and accurately. Conventional tracers are constructed with a mixture of an oxidizing agent, raw metal, and organic fuel. Upon ignition, the inside of the gun can be easily contaminated by the by-products, which can lead to firearm failure during long-term shooting. Moreover, there is a fire risk such as forest fires due to residual flames at impact site. Therefore, it is necessary to develop non-combustion type luminous material; however, this material must still use the heat generated from the propellant, so-called "thermoluminescence (TL)". This study aims to compare the TL emission of Dy3+, La3+ and Ho3+ doped MgB4O7 phosphors prepared by solid state reaction. The crystal structures of samples were determined by X-ray diffraction and matched with the standard pattern of MgB4O7. Luminescence of various doses (200 ~ 15,000 Gy) of gamma irradiated Dy3+, La3+ and Ho3+ (at different concentrations of 5, 10, 15 and 20 %) doped MgB4O7 were recorded using a luminance/color meter. The intensity of TL yellowish (CIE x = 0.401 ~ 0.486, y = 0.410 ~ 0.488) emission became stronger as the temperature increased and the total gamma-ray dose increased.

Partial Oxidation of CH4 Using {0.7}Sr0.3Ga0.6Fe0.4O3-δ for Soild Oxide Fuel Cell (고체산화물 연료전지용 La0.7Sr0.3Ga0.6Fe0.4O3-δ계의 메탄부분산화반응)

  • Lee, Seung-Young;Lee, Kee-Sung;Lee, Shi-Woo;Kim, Jong-Won;Woo, Sang-Kuk
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.1
    • /
    • pp.59-64
    • /
    • 2003
  • We fabricated mixed ionic-electronic conducting membranes, $CH_4\;Using\;{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$, by solid state reaction method for solid oxide fuel cell. The membranes consisted of single perovskite phase and exhibited high relative density, $>95\%$. We coated $La_{0.6}Sr_{0.4}CoO_{3-\delta}$ layer using screen printing method in order to improve surface reactivity of the $La_{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$. As a result, the oxygen permeation flux of the coated $La_{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$ showed higher value, $0.5ml/min{\cdot}cm^2\;at\;950^{\circ}C$ than the uncoated one. Higher oxygen permeation was observed in the porously coated Lao $La_{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$membranes with larger grain sizes. Syngas, $CO+H_2$, was successfully obtained from methane gas, $CH_4$, using the $La_{0.6}Sr_{0.4}CoO_{3-\delta}$ coated $La_{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$, with over $40\%\;of\;CH_4$ conversion and syngas yield. $La_{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$ membrane was stable even when it was exposed to the reducing environment, methane, for 600 hrs at $950^{\circ}C$.

NOx Emission Characteristics with Operating Conditions of SNCR in SRF Usage Facilities (고형연료제품 사용시설에서의 SNCR의 운전조건에 따른 NOx 배출특성)

  • Seo, Je-Woo;Kim, Younghee
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.350-358
    • /
    • 2021
  • The results of this study shows that the combustor temperature ranged from 848.27 to 1,026.80 ℃, averaging about 976.61 ℃, and the NOx concentration increased as the temperature increased. The urea usage ranged from 291.00 to 693.00 kg d-1, averaging about 542.34 kg d-1, and the NOx concentration decreased as the urea usage increased. Residence time was about 3.38 to 9.17 s, averaging about 5.22 s, about 2.61 times larger than the 2 s of the design details. This is 1,086 kg h-1, averaging about 55.71%, compared to the 1,950 kg h-1 SRF input permission standard. The combustion chamber area is constant, but the residence time is shown to increase with the decrease of exhaust gas. The O2/CO ratio was 847.05 to 14,877.34, averaging about 3,111.30, and the NOx concentration slightly increased as the O2/CO ratio increased. As the combustor temperature and O2/CO ratio increased, the combustion reaction with nitrogen in the air increased and the NOx concentration slightly increased. As the urea usage and residence time increased, the NOx concentration decreased slightly with an increase in reactivity with NOx. The NOx concentration at the stack ranged from 7.88 to 34.02 ppm with an average of 19.92 ppm, and was discharged within the 60 ppm emission limit value. The NOhx emission factor was 1.058 to 1.795 kg ton-1, averaging about 1.450 kg ton-1. This value was about 24.87% of the maximum emission factor of 5.830 kg ton-1 of other solid fuels. Other synthetic resins and industrial wastes were 79.80% and 43.65% compared to 1.817 kg ton-1 and 3.322 kg ton-1, respectively. This value was similar to 1.400 kg ton-1 of RDF in the NIER notice (2005-9), 10.98% compared to the maximum SRF of 13.210 kg ton-1. Therefore, the NOx emission factor had a large deviation.

Electrochemical Characteristics of Anode-supported Solid Oxide Fuel Cells (연료극 지지형 고체산화물 연료전지의 전기화학적 특성)

  • Yoon Sung Pil;Han Jonghee;Nam Suk Woo;Lim Tae-Hoon;Hong Seong-Ahn;Hyun Sang-Hoon;Yoo Young-Sung
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.2
    • /
    • pp.58-64
    • /
    • 2001
  • YSZ ($8mol\%$ yttria-stabilized zirconia)-modified LSM $(La_{0.85}Sr_{0.15}MnO_3)$ composite cathodes were fabricated by formation of YSZ film on triple phase boundary (TPB) of LSM/YSZ/gas. The YSZ coating film greatly enlarged electrochemical reaction sites from the increase of additional TPB. The composite cathode was formed on thin YSZ electrolyte (about 30 Um thickness) supported on an anode and then I-V characterization and AC impedance analyses were performed at temperature between $700^{\circ}C\;and\;800^{\circ}C$. As results of the impedance analysis on the cell at $800^{\circ}C$ with humidified hydrogen as the fuel and air as the oxidant, R1 around the frequency of 1000 Hz represents the anode Polarization. R2 around the frequency of 100Hz indicates the cathode polarization, and R3 below the frequency of 10 Hz is the resistance of gas phase diffusion through the anode. The cell with the composite cathode produced power density of $0.55\;W/cm^2\;and\;1W/cm^2$ at air and oxygen atmosphere, respectively. The I-V curve could be divided into two parts showing distinctive behavior. At low current density region (part I) the performance decreased steeply and at high current density region (part II) the performance decreased gradually. At the part I the performance decrease was especially resulted from the large cathode polarization, while at the part H the performance decrease related to the electrolyte polarization.