• Title/Summary/Keyword: Solid works

Search Result 236, Processing Time 0.032 seconds

Technique for Simulating Gain Tuning using SolidWorks® and LabVIEW® for a Six-Axis Articulated Robot (SolidWorks®와 LabVIEW®를 연동한 6축 수직 다관절 로봇의 게인 튜닝 연구)

  • Jung, C.D.;Chung, W.J.;Kim, M.S.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.1
    • /
    • pp.75-82
    • /
    • 2014
  • For accurate gain tuning of the lab-manufactured six-axis articulated robot RS2 with less noise, in this study, a program routine using dynamic signal analyzer, which is a realization of a controller design algorithm in the frequency domain, is programmed using LabVIEW$^{(R)}$. The contribution of this paper is the proposal of a simulation technique based on SolidWorks$^{(R)}$ and LabVIEW$^{(R)}$ for the gain tuning of a six-axis articulated robot. To realize the simulation, the LabVIEW$^{(R)}$ program used for experimental gain tuning is incorporated in to SolidWorks$^{(R)}$. A comparison shows that the results of simulation-based gain tuning and experimental gain tuning are almost the same within a 5% error bound. On the basis of the comparison, it can be suggested that the simulation-based technique for gain tuning can be applied instead of experimental gain tuning to a six-axis articulated robot by interlocking SolidWorks$^{(R)}$ and LabVIEW$^{(R)}$.

SolidWorks96을 이용한 냉각탑 개발 적용

  • 원두환
    • CDE review
    • /
    • v.2 no.2
    • /
    • pp.46-49
    • /
    • 1996
  • 다품종 소량 생산 방식의 제품을 생산하는 업체에서 가장 큰 어려움은 수요자의 요구에 따른 설계를 빈번히 수정하여 제품도를 만들어야 하기 때문에 이에 대한 소요 시간 등이 상당히 요구되는 기존의 2D CAD System의 한계성에 부딪혀 이를 극복하기 위한 새로운 CAD System으로서 SolidWorks96 장점을 활용하여 표준 model 하나로써 자동설계를 구현하고자 냉각탑을 설정, 이에 대한 적용 활용 방법을 소개하고자 한다.

  • PDF

Optimal model of transportation for people with disabilities: Conceptual proposal designed in CAD

  • Vergunova, Nataliia;Vergunov, Sergey
    • Advances in Computational Design
    • /
    • v.5 no.4
    • /
    • pp.381-396
    • /
    • 2020
  • This study aimed to develop an optimal model of transportation for people with disabilities. To achieve this goal, powers of research and design should be involved, including CAD software. This paper investigates both: the concept of optimal model of transportation for people with disabilities (functional, ergonomic, constructive, technological and aesthetic solutions included); and its implementation as a fully-fledged 3D-model designed in SolidWorks environment. The optimal model of transportation is complex and consists of two objects. The first object is for indoors that is a wheelchair, the second one is for street driving that is an individual vehicle. The optimal model of transportation is universal and multifunctional, which have become possible with parametric feature-based approach utilized in SolidWorks.

Integrated SolidWorks & Simscape Platform for the Model-Based Control Algorithms of Hydraulic Manipulators

  • Ahn, Doo Sung;Lee, Ill Yeong;Kim, Hyun Ho
    • Journal of Drive and Control
    • /
    • v.12 no.4
    • /
    • pp.41-47
    • /
    • 2015
  • Hydraulic manipulators have been widely used in many different fields due to their high force/torque to inertia ratio. The increased speed of hydraulic manipulators requires solutions to problems ranging from mechanical design to the need to determine a robot model suitable for model-based control. As a solution, this paper presents the integration of SolidWorks with Simscape for designing and controlling hydraulic manipulators. The integration provides a platform for the rapid control prototyping of a hydraulic robot without the need to build actual prototypes. The mechanical drawings of a manipulator are first created using Solidworks and are then imported into Simscape, where the manipulator is represented by connected block diagrams based on the principle of physical modeling. Simulation examples for a 3D manipulator made by KNR SYSTEM INC are verified to show the effectiveness of the presented platform.

Development of the Automatic Generation Program of the Helical Gear Using Solid Works API (SolidWorks API를 이용한 헬리컬기어 자동생성 프로그램 개발)

  • Choi, Wan-Shik;Park, Chan-Il
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1142-1147
    • /
    • 2004
  • The tooth profile of helical gear that is manufactured by the rack cutter consists of the involute curve and the trochoid curve. However, gear designers are very hard to calculate the exact profile because it needs very complex information about the gear manufacturing. Therefore, the purpose of this study is to develop the automatic generation program for the helical gear using the Solid Works API. First, involute and trochoide coordinates by the rack cutter are calculated. Using the data, Visual Basic program for the helical gear model is coded. This work gives us the quick helical gear modeling and can be used as the modeling for the finite element analysis.

  • PDF

Integrated SolidWorks & Simscape Platform for the Model-Based Control Algorithms of Robot Manipulators

  • Ahn, Doo-Sung
    • Journal of Power System Engineering
    • /
    • v.18 no.4
    • /
    • pp.91-96
    • /
    • 2014
  • The application of the recent model-based control schemes for robot manipulators require the solution of problems concerning various aspects, from the mechanical design to the necessity of determining a robot model suitable for control, and of experimentally testing the control performances. For one solution, integration of SolidWorks with Simscape for designing and controlling robot manipulators is presented in this paper. The integration provides a platform for rapid control prototyping of robot manipulators without the need for building real prototypes. Mechanical drawings of a robot are first created using Solidworks and imported into the Simscape, where a robot is represented by connected block diagrams based on the principle of physical modeling. Simulation examples for 7-DOF SAM ARM made by Berrett Technology Inc. are testified to show effectiveness of the presented platform.

FEM Analysis on the Damage for the Cable of Cabled-suspension Bridges by Fire (화재에 의한 사장교 케이블의 유한요소 해석)

  • Song, Young-Sun;Lee, Byung-Sik;Kim, Hyeong-Joo;Park, Weon-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.1
    • /
    • pp.136-142
    • /
    • 2008
  • Recently, cabled-suspension bridges and suspension bridge have been increasingly built in korea. But such structures were often damaged by fire due to car collison. In this study, the cabled-suspension bridges constructed under the kind of the project of national road aggrandizement are modeled using Solid Works 2007. The COSMOS FloWorks 2007 software are used for Heat Transfer Analysis and Thermal Stress Analysis. The safety of wire, HDPE pipe and stainless steel pipe are investigated. The major variables for the analysis are the temperature of the heat source, the distance between the fire-proof bulk head and the heat source, wind velocity, and the height of the end of Stainless steel pipe.

Free Vibration Analysis of Solid and Annular Circular Membranes with Continuously Varying Density Using The Differential Transformation Method

  • Shin, Young-Jae;Yun, Jong-Hak;Jaun, Su-Ju;You, Young-chan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.988-993
    • /
    • 2003
  • This paper presents the application of the technique of differential transformation of free vibration of membrane. Numerical calculations are carried out and compared with previously published results. The results obtained by the present method agree very well with those reported in the previous works. The present analysis shows the usefulness and validity of differential transformation in solving a solid and annular circular membranes problem of the responses of the free vibration.

  • PDF

Three dimensional free vibration analysis of functionally graded nano cylindrical shell considering thickness stretching effect

  • Dehsaraji, Maryam Lori;Arefi, Mohammad;Loghman, Abbas
    • Steel and Composite Structures
    • /
    • v.34 no.5
    • /
    • pp.657-670
    • /
    • 2020
  • In this paper, vibration analysis of functionally graded nanoshell is studied based on the sinusoidal higher-order shear and normal deformation theory to account thickness stretching effect. To account size-dependency, Eringen nonlocal elasticity theory is used. For more accurate modeling the problem and corresponding numerical results, sinusoidal higher-order shear and normal deformation theory including out of plane normal strain is employed in this paper. The radial displacement is decomposed into three terms to show variation along the thickness direction. Governing differential equations of motion are derived using Hamilton's principle. It is assumed that the cylindrical shell is made of an arbitrary composition of metal and ceramic in which the local material properties are measured based on power law distribution. To justify trueness and necessity of this work, a comprehensive comparison with some lower order and lower dimension works and also some 3D works is presented. After presentation of comparative study, full numerical results are presented in terms of significant parameters of the problem such as small scale parameter, length to radius ratio, thickness to radius ratio, and number of modes.