• Title/Summary/Keyword: Solid waste landfill

Search Result 158, Processing Time 0.022 seconds

Municipal solid waste management in India - Current status, management practices, models, impacts, limitations, and challenges in future

  • Jagriti Patel;Sanskriti Mujumdar;Vijay Kumar Srivastava
    • Advances in environmental research
    • /
    • v.12 no.2
    • /
    • pp.95-111
    • /
    • 2023
  • Pollution, climate change, and waste accumulation are only some of the new problems that have arisen because of the exponential population growth of the past few decades. As the global population expands, managing municipal solid trash becomes increasingly difficult. This is by far the most difficult obstacle for governments to overcome, especially in less developed nations. The improper open dumping of trash, which is causing mayhem across the country, has two immediate effects: it contaminates groundwater and surface water. Air pollution and the accumulation of greenhouse gases are both exacerbated by the release of methane and other harmful waste gases. Leachate from the landfill leaks underground and pollutes groundwater. In most cases, leachate moves into the groundwater zone and pollutes it after forming in association with precipitation that infiltrates via waste. This has far-reaching effects on people's health and disturbs the natural environment. This review article critically examines the current state of Solid Waste Management (SWM), addressing both the highlighted concerns and the government management solutions that have been put in place to address these issues. In addition, the constraints, and difficulties that India will face in the future in terms of solid waste management and the role of models for such a system are discussed.

Estimation of Greenhouse Gas Reduction Potential by Treatment Methods of Excavated Wastes from a Closed Landfill Site (사용종료매립지(使用終了埋立地) 폐기물(廢棄物)의 처리방법별(處理方法別) 온실(溫室)가스 저감량(低減量) 평가(評價))

  • Lee, Byung-Sun;Han, Sang-Kuk;Kang, Jeong-Hee;Lee, Nam-Hoon
    • Resources Recycling
    • /
    • v.22 no.6
    • /
    • pp.3-11
    • /
    • 2013
  • This study was carried out to estimate greenhouse gas reduction potentials under treatment methods of combustible wastes excavated from closed landfill. The treatment methods of solid wastes were landfilling, incineration, and production of solid recovery fuel. The greenhouse gas reduction potentials were calculated using the default emission factor presented by IPCC G/L method of IPCC (Intergovernmental Panel on Climate Change). The composition of excavated waste represented that screened soil was the highest (65.96%), followed by vinyl/plastic (19.18%). This means its own component is similar to the other excavated waste from unsanitary landfill sites. Additionally, its bulk density was 0.74 $t/m^3$. In case of landfilling of excavated waste, greenhouse gas emission quantity was 60,542 $tCO_2$. In case of incineration of excavated waste, greenhouse gas emission quantity was 9,933 $tCO_2$. However, solid recovery fuel from excavated waste reduced 33,738 $tCO_2$ of the greenhouse gas emission quantity. Therefore, solid recovery fuel production is helpful to reduce of greenhouse gas emission.

A Case Study on Suitability Analysis of Solid Waste Landfill Site utilizing GIS (GIS를 활용한 폐기물 매립지의 적지분석 사례연구)

  • Lee, Jin-Duk;Yeon, Sang-Ho;Kim, Sung-Gil
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.3 no.4
    • /
    • pp.33-49
    • /
    • 2000
  • This research demonstrates the application of GIS to the selection of the waste landfill site through the case study of a urban area. The estimation factors for the suitability analysis of the waste landfill site were determined. The database was built through collection, input, and transformation of data. The recent land cover classification data and NDVI data which were obtained through processing of satellite imagery were incorporated into GIS data as estimation factors. The relative weights of importance among 2nd category estimation factors were determined by the pairwise comparison method. Also relative weights of 1st category estimation factors which are divided into the social-economical factor and the natural environmental factor were combined with those of 2nd category estimation factors. As the results of this case study, the suitability analysis was conducted in accordance with various estimation criteria. The highest suitability index was obtained in the case where we considered the relative weights of 2nd category estimation factors as different in the viewpoint which regards the social economical factor as important.

  • PDF

A Study on Methanogenic Bacteria-Activated Leachate Recirculation Method for Enhancing Waste Stabilization and Landfill Gas Production from a Solid waste Landfill (매립가스 발생량 및 폐기물 안정화 촉진을 위한 메탄생성균 활성 침출수 재순환 공법에 관한 연구)

  • Park, Jin-Kyu;Kang, Jeong-Hee;Chong, Yong-Gil;Lee, Nam-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.2
    • /
    • pp.66-75
    • /
    • 2012
  • The objective of this study was to assess the effects of methanogenic bacteria-activated leachate recirculation method for enhancing waste stabilization and landfill gas production from a solid waste landfill. To simulate a conventional landfill (Lys-A), a landfill recirculated only fresh leachate (Lys-B), and two landfills recirculated leachate after pretreating with ASBR (Lys-C and Lys-D), four lysimeters were operated over a period of 4 years. Lys-D was recirculated two times of pretreated leachate volume than that of Lys-C. In the case of the landfill recirculated only fresh leachate and the landfill recirculated leachate after pretreating with ASBR, methane productions were increased until about 600 days, but there were not effect of leachate recirculation for enhancing methane production after about 600 days. It was assumed that leachate recirculation into fewer biodegradable organic wastes had not effect to enhance landfill gas production. Lys-C and Lys-D showed the highest performance for enhancing cumulative methane yield as well as acceleration waste stabilization. In cumulative methane yield, Lys-C (35.51 mL $CH_4/g$ VS) and Lys-D (36.12 mL $CH_4/g$ VS) were much higher than Lys-A (28.37 mL $CH_4/g$ VS) and Lys-B (30.07 mL $CH_4/g$ VS). In case of between Lys-B and Lys-C with the same recirculation rate, COD concentration in Lys-C was more rapidly decreased compared with that in Lys-B. This was attributed to the presence of methanogenic bacteria as well as dilution of inhibitory substances by the methanogenic bacteria-activated leachate recirculation. Therefore, the landfill recirculated leachate after pretreating with ASBR was found to be the most appropriate operating techniques for enhancing waste stabilization and landfill gas production.

A Treatment and Construction Use of Municipal Solid Waste Ash (도시고형 폐기물 소각재의 무해화 처리와 응용)

  • Lee, Jae-Jang;Shin, Hee-Duck;Park, Chong-Lyuck
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.45-49
    • /
    • 2001
  • Many cities and provinces are rapidly depleting landfill spaces. As the result, some municities have adopted to incinerate their municipal solid waste(MSW). The motive behind the choice is that incineration significantly reduces the volume of solid waste in need of disposal, destroys the harmful organic compounds that are present in MSW, and provides an attractive source of alternative energy. Conclusively, the generation of MSW ash is expected to increse in the furture. However, disposing the MSW ash in landfills may not always be an environmentally or an economically feasible solution. This paper addresses the various issues associated with MSW ash and its possible use in construction applications.

  • PDF

A Study on the Integrated Management System of Municipal Solid Waste from Seoul Metropolitan City (서울시 일반폐기물의 통합적 관리체계에 관한 연구)

  • 우세홍;홍상균
    • Journal of Environmental Health Sciences
    • /
    • v.19 no.4
    • /
    • pp.51-58
    • /
    • 1993
  • The integrated solid waste management for Seoul Metropolitan city can be established on the basis of the following hierarchy of priorities: 1. Efforts for source reduction should be propelled by both government and citizens to achieve the effects of resource conservation. The adequate production and consumption which are environmentally amenable and sustainable can be induced by the reasonable imposition of deposit money for waste treatment to one-time use products. To accomplish source reduction effectively, the induction of legal and institutional regulation of producer and consumer participation is requisite. 2. For resource recovery, wastes generated should be recycled as far as practicable. Community residents are responsible to separate discharge, the authorities concerned have responsibility of separate collection, and recycling industry should be assissted through tax reduction and financing. Resource separation facilities can be constructed at Kimpo Metropolitan landfill site for wastes not separately collected due to some unavoidable circumstances. 3. Garbage should be composted. Garbage is uneconomical for incineration, because it has high moisture content and low calorie, thus there is no reason for the incineration of garbage even though garbage is classified into combustibles. Composting facilities can be located at sites which are not densely populated and easily accessible to transportation, for example, Kimpo Metropolitan landfill site. Compost produced can be managed by the authorities for the use of fertilizer to a green tract of suburban land and farms. 4. Nonhazardous combustible wastes not recyclable can be utilized for thermal recovery at the incinerators which are completely equipped with pollution control devices. According to the trend of local autonomy and the equity principle of local autonomous entities, incineration facilities of minimal capacity required can be constructed at each districts of Seoul Metropolitan city which have organized local assembly. In case of Yangcheon district, the economically combustible waste quantity is about 260 tons/day which exceeds 150 tons/day, the incineration capacity of existing facility. But, from now on, waste quantity can be reduced substantially by the intensive efforts of citizens for source reduction and recycling and the institutional support of administrative organizations. Especially, it is indispensable for the government to constitute institutional and technological bases that can recycle paper and plastics form 43% of waste generated. A good time for constructing of incineration facilities for municipal solid waste can be postponed to the time that pollution control technologies of domestic enterprises are fully developed to satisfy the standards of air pollution prevention, because the life expectancy of Kimpo Metropolitan landfill site is about 25 years. Within this period, institutional improvements and technological advancements can be attained, while the air qual. ity of Seoul Metropolitan city can be ameliorated to the level to afford incineration facilities. 5. For final disposal, incombustibles and ash are landfilled sanitarily at Kimpo Metropolitan landfill site.

  • PDF

Appropriate Technologies for Municipal Solid Waste Management in Bantayan Island, Philippines

  • Yu, Kwang Sun;Thriveni, Thenepalli;Jang, Changsun;Whan, Ahn Ji
    • Journal of Energy Engineering
    • /
    • v.26 no.1
    • /
    • pp.54-61
    • /
    • 2017
  • In general, solid waste arises from lots of human activities such as domestic, agricultural, industrial, commercial, waste water treatment, construction, and mining activities etc. If the waste is not properly disposal and treated, it will have a negative impact to the environment, and hygienic conditions in urban areas and pollute the air with greenhouse gases (GHG), ground water, as well as the soil and crops. In this paper, the Carbon Resources Recycling Appropriate Technology Center feasibility studies are reported at Bantayan Island, Philippines on the municipal solid waste management. The present objective of our study is to characterize the municipal solid waste incineration (MSWI) bottom ash and case study of MSWI production status in Bantayan, Philippines. Currently, wide variety of smart technologies available for MSWI management in developed countries. Recycling is the other major alternative process for MSWI landfill issues. In this paper, the feasibility studies of applied appropriate technologies for the municipal solid waste generation in Bantayan Island, Philippines are reported.

RDF(Refuse Derived Fuel) Generation using MSW(Municipal Solid Waste) (생활폐기물을 이용한 RDF(Refuse Derived Fuel) 발전)

  • Jang, Jik-Sun;Jo, Jae-Beom
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.448-451
    • /
    • 2008
  • For resource Recycle society, the Ministry of Environment is recently propeling the introduction of MSW(Municipal Solid Waste) pretreatment facilities(MBT) from advanced country such as Germany. On the basis of this, The Ministry of Environment plans to expand all over the country after the adaption of wide area style(Sudokwon landfill : 200 ton/day), urban communities style(Bucheon City : 90 ton/day), Semi-urban(Gangreung City : 150 tons/a day), farm village style (Buan : 30 ton/day).

  • PDF

Modeling of coupled THMC processes in porous media

  • Kowalsky, Ursula;Bente, Sonja;Dinkler, Dieter
    • Coupled systems mechanics
    • /
    • v.3 no.1
    • /
    • pp.27-52
    • /
    • 2014
  • For landfill monitoring and aftercare, long-term prognoses of emission and deformation behaviour are required. Landfills may be considered as heterogeneous porous soil-like structures, in which flow and transport processes of gases and liquids interact with local material degradation and mechanical deformation of the solid skeleton. Therefore, in the framework of continuous porous media mechanics a model is developed that permits the investigation of coupled mechanical, hydraulical and biochemical processes in municipal solid waste landfills.

Sorption Equilibria and Transport of Gaseous Chlorinated Organic Solvent in Wet Solid Waste Layer (도시고형폐기물(都市固形廢棄物) 및 토양층(土壤層)에 있어서 비(非)이온성(性) 유해유기화학물질(有害有機化學物質)의 거동(擧動)에 관한 연구(硏究) (습윤고형물폐기물층(濕潤固形物廢棄物層)에 있어서 기체상(氣體相) 유해유기염소화물질(有害有機鹽素化物質)을 주대상(主對象)으로))

  • Lee, Donghoon;Tanaka, Nobutoshi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.7 no.2
    • /
    • pp.9-23
    • /
    • 1993
  • Emission of hazardous and volatile organic chemicals from solid waste landfill site was become to important issue because of environmental pollution and health risk by such chemicals. Laboratory batch and continuous experiments were conducted respectively to elucidate isothermal sorption behaviors and transport phenomena(by gas through unsaturated solid waste layer) in wet solid waste-gas system. Source separated and size reduced refuse(bulky waste) and incinerated ash were used after controlling water content, and trichloroethylene(TCE) was chosen among many such chemicals because of it's generality among those man-created pollutants. Isothermal TCE sorption equilibria wet solid waste-gas system can be described in linear equation and partition coefficient in this system can be estimated approximately by the simple equation derived from schematic structure of the system. Transport equation modified by instantaneous equilibrium sorption fraction and kinetic sorption rate(overall mass transfer capacity coefficient) simulated well the column experiment results.

  • PDF