• Title/Summary/Keyword: Solid oxide

Search Result 1,204, Processing Time 0.023 seconds

Performance Modeling of Single-Chamber Micro SOFC (단실형 마이크로 고체 산화물 연료전지의 작동특성 전산모사)

  • Cha, Jeong-Hwa;Chung, Chan-Yeup;Chung, Yong-Chae;Kim, Joosun;Lee, Jongho;Lee, Hae-Weon
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.12 s.283
    • /
    • pp.854-859
    • /
    • 2005
  • Performance of micro scale intermediate temperature solid oxide fuel cell system has been successfully evaluated by computer simulation based on macro modeling. Two systems were studied in this work. The one is designed that the ceria-based electrolyte placed between composite electrodes and the other is designed that electrodes alternately placed on the electrolyte. The injected gas was composed of hydrogen and air. The polarization curve was obtained through a series of calculations for ohmic loss, activation loss and concentration loss. The calculation of each loss was based on the solving of mathematical model of multi physical-phenomena such as ion conduction, fluid dynamics and diffusion and convection by Finite Element Method (FEM). The performance characteristics of SOFC were quantitatively investigated for various structural parameters such as distance between electrodes and thickness of electrolyte.

The Influences of Water Vapor/Hydrogen Ratio, Gas-Flow Rate and Antimony on the Surface Oxidation of Trip Steels

  • Kwon, Youjong;Zhu, Jingxi;Sohn, Il-Ryong;Sridhar, Seetharaman
    • Corrosion Science and Technology
    • /
    • v.10 no.6
    • /
    • pp.189-193
    • /
    • 2011
  • In the current paper, we are reporting the results from an investigation of the surface and sub-surface oxidation of a TRIP steel containing 2 wt.% Mn and 0.5 wt.% Al with and without 0.03 wt.% Sb. The oxidizing conditions in the gas were successively varied in terms of the linear gas flow-rate and dew-point, from conditions were gas-phase mass transport limited conditions prevailed, to those were solid state processes became the rate determining conditions. It was found, that at sufficient low oxidizing conditions (defined as flow-rate/dew-point), the metal surfaces were clear of any external oxides, and as the oxidizing conditions were increased, Mn- and Si- oxide nodules formed along with magnetite. As the oxidizing conditions were increased further, a dense magnetite layer was present. The limits of the various regions were experimentally quantified and a proposed hypothesis for their occurrences is presented. No obvious effect of Sb was noted in this micro-structural research of the oxides that results from the various conditions investigated in this study.

Growth Mechanism of Self-Catalytic Ga2O3 Nano-Burr Grown by RF Sputtering

  • Park, Sin-Yeong;Choe, Gwang-Hyeon;Gang, Hyeon-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.462-462
    • /
    • 2013
  • Gallium Oxide (Ga2O3) has been widely investigated for the optoelectronic applications due to its wide bandgap and the optical transparency. Recently, with the development of fabrication techniques in nanometer scale semiconductor materials, there have been an increasing number of extensive reports on the synthesis and characterization of Ga2O3 nano-structures such as nano-wires, nanobelts, and nano-dots. In contrast to typical vaporliquid-solid growth mode with metal catalysts to synthesis 1-dimensional nano-wires, there are several difficulties in fabricating the nanostructures by using sputtering techniques. This is attributed to the fact that relatively low growth temperatures and higher growth rate compared with chemical vapor deposition method. In this study, Ga2O3 chestnut burr were synthesized by using radio-frequency magnetron sputtering method. In contrast to typical sputtering method with sintered ceramic target, a Ga2O3 powder (99.99% purity) was used as a sputtering target. Several samples were prepared with varying the growth parameters, especially he growth time and the growth temperature to investigate the growth mechanism. Samples were characterized by using XRD, SEM, and PL measurements. In this presentation, the details of fabrication process and physical properties of Ga2O3 nano chestnut burr will be reported.

  • PDF

Cathodoluminescence of $Mg_2$$SnO_4$:Mn,:Mn Green Phosphor under Low-Voltage Electron Excitation ($Mg_2$$SnO_4$:Mn 녹색 형광체의 저전압 음극선 발광 특성)

  • Kim, Gyeong-Nam;Jeong, Ha-Gyun;Park, Hui-Dong;Kim, Do-Jin
    • Korean Journal of Materials Research
    • /
    • v.11 no.9
    • /
    • pp.759-762
    • /
    • 2001
  • Mg$_2$SnO$_4$having an inverse spinel structure was selected as a new host material of $Mn^{2+}$ activator. The luminescence of the $Mg_2$SnO$_4$:Mn phosphor prepared by the solid-state reaction were investigated under ultraviolet and low-voltage electron excitation. The Mn-doped magnesium tin oxide exhibited strong green emission with the spectrum centered at 500nm wavelength. It was explained that the green emission in $Mg_2$SnO$_4$:Mn phosphor is due to energy transfer from $^4T_1to ^6A_1\;of\; Mn^{2+}$ ion at tetrahedral site in the spinel structure. The optimum concentration of $Mn^{2+}$/ion exhibiting maximum emission intensity by the low-voltage electron excitation was 0.6mol%. ?

  • PDF

Electrochemical stability of La0.6Sr0.4Co0.2Fe0.8O3-δ as a cathode for SOFC

  • Oh, Mi-Young;Jeong, Yong-Hoon;Oh, Se-Woong
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.6
    • /
    • pp.498-506
    • /
    • 2016
  • Electrochemical measurement using a LSCF6428 electrode was performed to estimate the oxygen potential gradient in the electrode layer and a long time stability test was performed by applied potential to learn the overpotential effect on the LSCF6428 electrode. By fitting the observed impedance spectra, it was obtained that the amount of faradic current decreased with distance from cathode/electrolyte interface. Oxygen potential gradient was estimated to occur within 1 um region from the cathode/electrolyte interface at an oxygen partial pressure of 10-1 bar. The segregation of cation rich phases in the LSCF6428 electrode suggests that kinetic decomposition took place. However, impedance response after applying the potential showed no changes in the electrode compared with before applying potential. The obtained results suggest that segregation of a secondary phase in a LSCF6428 cathode is not related to performance degradation for solid oxide fuel cells (SOFCs).

The Packaging and Irradiation Effects on Volatile Compounds of Red Pepper Powder

  • Lee, Jeung-Hee;Kim, Mee-Ree
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 2003.10a
    • /
    • pp.139.2-139
    • /
    • 2003
  • The packaging and irradiation effects on the volatile compounds of red pepper powder were investigated. The red pepper powder (Capsicum annuum) was prepackaged in vacuum (PE/Nylon film bag), and irradiated with the dose of 0, 3, 5 or 7 kGy at 0$^{\circ}C$. The odor of irradiated red pepper powder was classified into 4 groups (0, 3, 5, and 7 kGy) by electronic nose using metal oxide sensors, and the volatile compounds developed by irradiation were analyzed by GC-MS along with solid phase microextraction. Hexanoic acid and tetramethyl pyrazine, which were found in red pepper powder of 0 kGy, disappeared in irradiated red pepper powder. Further, 1,3-bis(1,1-dimethylethyl)-benzene was detected by GC-MS as a new developed volatile compound in irradiated red pepper, and this compound was identified to be originated from packaging material not from red pepper powder. This study showed that off-odor from packaging materials was responsible for the volatiles produced from dried food treated with irradiation.

  • PDF

Microwave Synthesis of a Porous Metal-Organic Framework, Nickel(II) Dihydroxyterephthalate and its Catalytic Properties in Oxidation of Cyclohexene

  • Lee, Ji-Sun;Halligudi, Shiva B.;Jang, Nak-Han;Hwang, Dong-Won;Chang, Jong-San;Hwang, Young-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1489-1495
    • /
    • 2010
  • A porous coordination solid of nickel(II) dihydroxyterephthalate has been synthesized by the microwave-assisted (MW) method. The synthesized nickel(II) dihyroxylterephthalate was designated by the general formula of [$Ni_2$(dhtp) $(H_2O)_2]{\cdot}8H_2O$ (where, dhtp = 2,5-dihydroxyterephthalate, denoted by Ni-DHTP). The effect of microwave-irradiation temperature and time of irradiation on the porosity and morphological changes in the solids have also been investigated. The catalytic performance of Ni-DHTP synthesized by MW method has been studied in the oxidation of cyclohexene with aqueous $H_2O_2$, which gave cyclohexene oxide as the primary product and 2-cyclohexene-1-ol as a major product.

Lithium Ion Concentration Dependant Ionic Conductivity and Thermal Properties in Solid Poly(PEGMA-co-acrylonitrile) Electrolytes

  • Kim, Kyung-Chan;Roh, Sae-Weon;Ryu, Sang-Woog
    • Journal of Electrochemical Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.57-62
    • /
    • 2010
  • The lithium ion concentration dependant ionic conductivity and thermal properties of poly(ethylene glycol) methyl ether methacrylate (PEGMA)/acrylonitrile-based copolymer electrolytes with $LiClO_4$ have been studied by differential scanning calorimetry (DSC), linear sweep voltammetry (LSV) and AC complex impedance measurements. In systems with 11 wt% of acrylonitrile all liquid electrolytes were obtained regardless of lithium ion concentration. Complex impedance measurements with stainless steel electrodes give ambient ionic conductivities $8.1\times10^{-6}\sim1.4\times10^{-4}S cm^{-1}$. On the other hand, a hard and soft films at ambient temperature were obtained in copolymer electrolyte system consists of 15 wt% acrylonitrile with 6 : 1 and 3 : 1 of [EO] : [Li] ratio, respectively. DSC measurements indicate the crystalline melting temperature of poly(PEGMA) disappeared completely after addition of $LiClO_4$ in this system due to the complex formation between ethylene oxide (EO) unit and lithium salt. As a result, free standing film with room temperature ionic conductivity of $1.7\times10^{-4}S cm^{-1}$ and high electrochemical stability up to 5.5V was obtained by controlling of acrylonitrile and lithium salt concentration.

Mechanical and Electrical Performance of Anode-Supported Solid Oxide Fuel Cells during Thermal Cyclic Operation (열 사이클에 따른 고체산화물 연료전지의 기계적 및 전기적 특성)

  • Yang, Su-Yong;Park, Jae-Keun;Lee, Tae-Hee;Yu, Jung-Dae;Yoo, Young-Sung;Park, Jin-Woo
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.12 s.295
    • /
    • pp.775-780
    • /
    • 2006
  • Mechanical and electrical performance of anode-supported SOFC single cells were analyzed after thermal cyclic operation. The experiments of thermal cyclic cell-operation were carried out four times and performance of each cell was measured at different temperatures of 650, 700, and $750^{\circ}C$, respectively. As increasing the number of thermal cycle test, single cells showed poor I-V characteristics and lower 4-point bending strength. The anode polarization was also measured by AC-impedance analysis. The observation of the microstructure of the anodes in single cells proved that the average particle size of Ni decreased and the porosity of anode increased. It is thought that the thermal cycle caused the degradation of performance of single cells by reducing the density of three-phase boundary region.

Fabrication of Co-Planar Type Single Chamber SOFC with Patterned Electrodes (패턴된 전극을 가진 표면 전도형 단실형 고체산화물 연료전지의 제조)

  • Ahn, Sung-Jin;Kim, Yong-Bum;Moon, Joo-Ho;Lee, Jong-Ho;Kim, Joo-Sun
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.12 s.295
    • /
    • pp.798-804
    • /
    • 2006
  • Co-planar type single chamber solid oxide fuel cell with patterned electrode on a surface of electrolyte has been fabricated by robo-dispensing method and microfluidic lithography. The cells were composed of NiO-GDC-Pd or NiO-SDC cermet anode, $(La_{0.7}Sr_{0.3})_{0.95}MnO_3$ cathode, and yttria stablized zirconia electrolyte. The cell performance at $900^{\circ}C$ was investigated as a function of electrode geometries, such as anode-to-cathode distance, numbers of electrode pairs. Relationship between OCV and I-V characteristics at the optimized operation condition was also studied by DC source meter under the mixed gas condition of methane, air, and nitrogen. An increase of anode-facing-cathode area leads to lower OCV due to intermixing between product gases of anode and cathode, which in turn decreases the oxygen partial pressure difference.