• Title/Summary/Keyword: Solid matter

Search Result 278, Processing Time 0.026 seconds

An Analysis and Criticism on Subject Matter Related to Solid Figures in Korean Elementary School Mathematics Textbook (우리나라 초등학교 수학 교과서에서의 입체도형 관련 지도 내용에 대한 분석과 비판)

  • Kwon, Seok-Il;Park, Kyo-Sik
    • Journal of Educational Research in Mathematics
    • /
    • v.21 no.3
    • /
    • pp.221-237
    • /
    • 2011
  • This paper focused on three drawbacks exposed in subject matter related to solid figures in elementary school math textbook. First, general solid figure are introduced before rectangular parallelepiped and cube in fifth grade math textbook, and prism and pyramid in sixth grade math textbook are introduced. Second, the process of abstraction from concrete objects to solid figures is insufficient in sixth grade math textbook. Third, some definitions in subject matter related to solid figures are inconsistent and ambiguous. The following four suggestions can be put forward as a conclusion based on these results. First, subject matter in textbooks must be correspond with that in curriculum. Second, it is necessary to inform teachers of range of subject matter through teachers guide book and manual for curriculum definitely. Third, each grade subject matter in math textbooks must be reexamined. Fourth, regular modification of math textbooks must be possible institutionally.

  • PDF

The Role of Organic Matter in Gold Occurrence: Insights from Western Mecsek Uranium Ore Deposit

  • Medet Junussov;Ferenc Madai;Janos Foldessy;Maria Hamor-Vido
    • Economic and Environmental Geology
    • /
    • v.57 no.4
    • /
    • pp.371-386
    • /
    • 2024
  • This paper presents analytical insights regarding into the occurrence of gold within organic matter, which is hosted by solid bitumen and closely associated with uranium ores in the Late Permian Kővágószőllős Sandstone Formation in Western Mecsek, South-West Hungary. The study utilizes a range of analytical techniques, including X-ray powder diffraction (XRPD) and wavelength dispersive X-ray fluorescence (WD-XRF) for comprehensive mineralogical and elemental analysis; organic petrography and electron microprobe analysis for characterizing organic matter; and an organic elemental analyzer for identifying organic compounds. A three-step sequential extraction method was used to liberate gold from organic matter and sulfide minerals, employing KOH, HCl, and aqua regia, followed by inductively coupled plasma optical emission spectroscopy (ICP-OES) to quantify gold contents. The organic matter is identified as comprising two vitrinite types (telinite V1 and reworked V2) and three solid bitumen forms: nonfluorescing (B1) and fluorescing (B2) fillings within the V1, as well as homogenous pyrobitumen (PB) occupying narrow cracks and voids within globular quartz. Despite the samples exhibiting low total organic carbon content (<1 wt%), they display high sulfur content (up to 6 wt%) and the sequentially extracted noble metal content from the organic matter is found to total 7.45 ppm gold. The research findings suggest that organic matter plays crucial roles in ore mineralization processes. Organic matter acts as an active component in the migration of gold, uranium, and hydrocarbons within sulfur-rich hydrothermal fluids. Additionally, organic matter contributes to the entrapment and enrichment of gold in hetero-atomic organic fractions, forming metal-organic compounds. Moreover, uranium inclusions are observed as oxide/phosphate minerals within solid bitumen and associated vitrinite particles. These insights into the occurrence and distribution of gold within organic matter highlight substantial exploration potential, guiding additional research activities focused on organic matter within the Kővágószőllős Sandstone Formation at the Western Mecsek deposit.

Analysis of the Fine Particulate Matter Particle Size Fraction Emitted from Facilities Using Solid Refuse Fuel (고형연료제품 사용시설에서 배출되는 미세먼지 입경분율 분석)

  • You, Han-Jo;Jung, Yeon-Hoon;Kim, Jin-guil;Shin, Hyung-Soon;Lim, Yoon-Jung;Lee, Sang-Soo;Son, Hae-Jun;Lim, Sam-Hwa;Kim, Jong-Su
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.6
    • /
    • pp.719-725
    • /
    • 2020
  • Objectives: With the growth of national interest in fine particulate matter, many complaints about pollutants emitted from air pollution emitting facilities have arisen in recent years. In particular, it is thought that a large volume of particulate pollutants are discharged from workplaces that use Solid Refuse Fuel (SRF). Therefore, particulate contaminants generated from SRF were measured and analyzed in this study in terms of respective particle sizes. Methods: In this study, particulate matter in exhaust gas was measured by applying US EPA method 201a using a cyclone. This method measures Filterable Particulate Matter (FPM), and does not consider the Condensable Particulate Matter (CPM) that forms particles in the atmosphere after being discharged as a gas in the exhaust gas. Results: The mass concentration of Total Suspended Particles (TSP) in the four SRF-using facilities was 1.16 to 11.21 mg/Sm3, indicating a very large concentration deviation of about 10 times. When the fuel input method was the continuous injection type, particulate matter larger than 10 ㎛ diameter showed the highest particle size fraction, followed by particulate matter smaller than 10 ㎛ and larger than 2.5 ㎛, and particulate matter of 2.5 ㎛ or less. Contrary to the continuous injection type, the batch injection type had the smallest particle size fraction of particulate matter larger than 10 ㎛. The overall particulate matter decreased as the operating load factor decreased from 100% to 60% at the batch input type D plant. In addition, as incomplete combustion significantly decreased, the particle size fraction also changed significantly. Both TSP and heavy metals (six items) satisfied the emissions standards. The measured value of the emission factor was 38-99% smaller than the existing emissions factor. Conclusions: In the batch injection facility, the particulate matter decreased as the operating load factor decreased, as did the particle size fraction of the particulate matter. These results will help the selection of effective methods such as reducing the operating load factor instead of adjusting the operating time during emergency reduction measures.

Characterization of Natural Organic Matter in Spring Water

  • Yoo, Hee-Jin;Choi, Yoon-Ji;Cho, Kun
    • Mass Spectrometry Letters
    • /
    • v.11 no.4
    • /
    • pp.90-94
    • /
    • 2020
  • Interest in aspects of industrialization relating to human health has increased. Accordingly, the use of labels such as 'natural foods' and 'organic ingredients' has become more widespread, and greater emphasis is being placed on improving quality of life. Water is an essential element for human life, and water quality has a significant impact on human health. However, technology that can precisely determine the substances present in water is still lacking. This study was conducted to establish a complete mass spectrometry process, from pretreatment to analysis, to measure and characterize natural organic matter (NOM) in Korean spring water samples. Salts and other matrices were removed from the samples using solid-phase extraction (SPE) with two different columns (PPL and C18). After establishing an accurate analysis method, the experimental results were evaluated based on Van Krevelen diagrams and analysis of molar O/C and H/C ratios. The method for characterizing NOM introduced herein should facilitate evaluation of water quality.

Systematic investigation of heavy metals from MSWI fly ash and bottom ash samples

  • Ramakrishna., CH;Thriveni., T;Ahn, Ji Whan
    • Journal of Energy Engineering
    • /
    • v.26 no.4
    • /
    • pp.35-44
    • /
    • 2017
  • Disposal of municipal solid waste has become a major problem in many countries around the world. As landfill space for the disposal of ash from Municipal Solid Waste Incineration (MSWI) becomes scarce, numerous reports and researches address the various environmental issues about the municipal solid waste incineration waste management and other particulate matters with the range of 10 ~ 2.5. Although in many developing and industrialization countries landfill with the disposal of municipal solid waste, open incineration has become a common practice. Large municipal waste incinerators are major industrial facilities and have the potential to be significant sources of environmental pollution. Despite the significant volume reduction from incineration, waste recycling is important to ensuring the future welfare of mankind. The main goal of the present work is the physical and chemical characterization of the local incineration bottom ash towards its eventual re-utilization. In this paper, we reported the studies on physical and chemical characteristics of municipal solid waste incineration (MSWI) fly ash and bottom ash containing particulate matter whose particulate sizes are lower than $PM_{10}$, $PM_{2.5}$ and heavy metal were investigated.

Adsorption of Ammonia on Municipal Solid Waste Incinerator Bottom Ash Under the Landfill Circumstance

  • Yao, Jun;Kong, Qingna;Zhu, Huayue;Zhang, Zhen;Long, Yuyang;Shen, Dongsheng
    • Korean Chemical Engineering Research
    • /
    • v.53 no.4
    • /
    • pp.503-508
    • /
    • 2015
  • The adsorption characteristics of ammonia on MSWI bottom ash were investigated. The effect of the variation of the landfill environmental parameters including pH, anions and organic matter on the adsorption process was discussed. Results showed that the adsorption could be well described by pseudo-second-order kinetics and Langmuir model, with a maximum adsorption capacity of 156.2 mg/g. The optimum adsorption of ammonia was observed when the pH was 6.0. High level of ion and organic matter could restrict the adsorption to a low level. The above results suggested that MSWI bottom ash could affect the migration of ammonia in the landfill, which is related to the variation of the landfill circumstance.

Study on the Treatability of High-Concetration Wastewater by ABBR (ASBR에 의한 고농도폐수의 혐기성처리 연구)

  • 김종찬;김요용;김세진;정일현
    • Journal of environmental and Sanitary engineering
    • /
    • v.10 no.1
    • /
    • pp.98-105
    • /
    • 1995
  • In the treatment of wastewater or sewage plant sludge with high solid concentration, high rate digestion process in which heating and mixing occur at a time is mainly used, and in the case of wastewater containing solid matter below 1000mg/ℓ the recently developed AF or UASB is developed Recently and commonly utilized. But these processes have weakpoints such as clogging of packing media and need of long period of trial run after microorganism granulation. In this point of view, there are active researches on the ASBR( anaerobic sequence batch reaction ) that is capable of treating of organic matter with reactor that has no packing materials and controlling the inflow time, reaction time sedimentation time and outflow time by time control without loss of microorganisms. The objectives of this study are to evaluate the efficiency of ASBR process according to the reaction time, change of treated water quality and gas output rate in the treatment of wheat plant wastewater.

  • PDF

Effects of Abnormal Kernels in Brown Rice on Milling Characteristics (현미 비정상립이 도정특성에 미치는 영향)

  • Kim, Chang-Jin;Lee, Hyun-Jeong;Kim, Oui-Woung;Keum, Dong-Hyuk;Kim, Hoon
    • Journal of Biosystems Engineering
    • /
    • v.32 no.1 s.120
    • /
    • pp.1-5
    • /
    • 2007
  • This study was conducted to find out effects of abnormal kernels of 0 to 30% in brown rice on quality characteristics during milling using friction type test mill. The average hardness values of abnormal and normal brown rice kernels were 6.52 kg$_f$, 8.48 kg$_f$, respectively. According to the increase of abnormal kernels in brown rice, grain temperature, required electrical energy, the broken kernels ratio, and the weight of solid matter on the surface of milled rice were increased due to crush of the abnormal kernels during milling, which proves that abnormal kernels in brown rice should be removed before milling to improve milling characteristics.

Weathering of coal and kerogen : implications on the geochmical carbon and oxygen cycle and the environmental geochemical reactions (탄질 유기물과 케로젠의 풍화 : 탄소와 산소의 지화학적 순환 및 환경화학적 반응에 미치는 영향)

  • 장수범
    • Economic and Environmental Geology
    • /
    • v.32 no.1
    • /
    • pp.101-111
    • /
    • 1999
  • Sedimentary organic matter, exposed to continental surficial environment, reacts with oxygen supplied from the atmosphee and forms carbon-containing oxidation products. Knowledge of the rate and mechanisms of sedimentary organic matter weathering is important because it is one of the major controls on atmospheric oxygen level through geologic time. Under the abiological conditions, the oxidation rate of coal organic matter by molecular oxygen is enhanced by the increase of oxygen concentration and temperature. At ambient temperature and pressure, aqueous coal oxidation results in the formation of dissolved $CO_2$ dissolved organic carbon and solid oxidation products which are all quantitatively significant reaction products. The effects of pH, ultraviolet light, and microbial activity on the weathering of sedimentary organic matter are poorly contrained. Based on the results of geochmical and environmental studies, it is believed that the photochemical reaction should play an important role in the decomposition and oxidation of sedimentary organic matter removed from the weathering profile. At higher pH conditions, the production rate of DOC can be accelerated due to base catalysis. These high molecular weight oranic matter can react with man-made pollutants such as heavy metal ions via adsorption/desorption or ion exchange reactions. The effect of microbial activity on the oxidative weathering of sedimentary organic matter is poorly understood and remains to be studied.

  • PDF