• 제목/요약/키워드: Solid Surface

검색결과 2,428건 처리시간 0.025초

고체철-용융아연의 용해반응 (The Dissolving Reaction of Solid Iron with Molten Zinc)

  • 윤병하;정인상;박경채
    • 한국표면공학회지
    • /
    • 제9권2호
    • /
    • pp.1-7
    • /
    • 1976
  • The dissolving and growth kinetics of intermetallic compounds for the reaction between solid iron and molten zinc were studied under nitorgen atmosphere over the temperature range between470$^{\circ}C$ and 680$^{\circ}C$. The rates of dissolution of solid iron into molten zinc were obtained under a static conditon, The amount of dissolution of sold iron and the growth of intermetalic compounds could be determined by means of microscopy. The thickness of intermetallic compound at a given temperature increases with increasing time, whereas for a given time decreases with increasing temperature . The rate of dissolution is controlled by the diffusion process of iron in the effective boundary layer of molten zinc over the temperature range 470$^{\circ}$-530$^{\circ}C$, 570$^{\circ}$-620$^{\circ}C$, and 650$^{\circ}$-665$^{\circ}C$, while by the surface reaction over the range 530$^{\circ}$-570$^{\circ}C$ and 620$^{\circ}$-650$^{\circ}C$.

  • PDF

완전 비습윤 고체 표면 위 타원형 액적의 충돌 및 퍼짐 거동에 대한 수치적 연구 (NUMERICAL ANALYSIS OF THE IMPACTING AND SPREADING DYNAMICS OF THE ELLIPSOIDAL DROP ON THE PERFECT NON-WETTING SOLID SURFACE)

  • 윤성찬
    • 한국전산유체공학회지
    • /
    • 제21권4호
    • /
    • pp.90-95
    • /
    • 2016
  • Leidenfrost drops with ellipsoidal shaping can control the bouncing height by adjusting the aspect ratio(AR) of the shape at the moment of impact. In this work, we focus on the effect of the AR and the impact Weber number(We) on the non-axisymmetrical spreading dynamics of the drop, which plays an important role in the control of bouncing. To understand the impact dynamics, the numerical simulation is conducted for the ellipsoidal drop impact upon the perfect non-wetting solid surface by using volume of fluid method, which shows the characteristics of the spreading behavior in each principal axis. As the AR increases, the drop has a high degree of the alignment into one principal axis, which leads to the consequent suppression of bouncing height with shape oscillation. As the We increases, the maximum spreading diameters in the principal axes both increase whereas the contact time on the solid surface rarely depends on the impact velocity at the same AR. The comprehensive understanding of the ellipsoidal drop impact upon non-wetting surface will provide the way to control of drop deposition in applications, such as surface cleaning and spray cooling.

The surface stress effects on the buckling analysis of porous microcomposite annular sandwich plate based on HSDT using Ritz method

  • Mohsen Emdadi;Mehdi Mohammadimehr;Borhan Rousta Navi
    • Computers and Concrete
    • /
    • 제32권5호
    • /
    • pp.439-454
    • /
    • 2023
  • In this article, the surface stress effects on the buckling analysis of the annular sandwich plate is developed. The proposed plate is composed of two face layers made of carbon nanotubes (CNT) reinforced composite with assuming of fully bonded to functionally graded porous core. The generalized rule of the mixture is employed to predict the mechanical properties of the microcomposite sandwich plate. The derived potentials energy based on higher order shear deformation theory (HSDT) and modified couple stress theory (MCST) is solved by employing the Ritz method. An exact analytical solution is presented to calculate the critical buckling loads of the annular sandwich plate. The predicted results are validated by carrying out the comparison studies for the buckling analysis of annular plates with those obtained by other analytical and finite element methods. The effects of various parameters such as material length scale parameter, core thickness to total thickness ratio (hc/h), surface elastic constants based on surface stress effect, various boundary condition and porosity distributions, size of the internal pores (e0), Skempton coefficient and elastic foundation on the critical buckling load have been studied. The results can be served as benchmark data for future works and also in the design of materials science, injunction high-pressure micropipe connections, nanotechnology, and smart systems.

3D Modeling of a Fabric based on its 3D Microstructure Image and Application of the Model of the Numerical Simulation of Heat Transfer

  • Lee, Hyojeong;Lee, Heeran;Eom, Ran-i;Lee, Yejin
    • 패션비즈니스
    • /
    • 제20권3호
    • /
    • pp.30-42
    • /
    • 2016
  • The objective of this study was to perform 3D solid modeling from 3D scanned surface images of cotton and silk in order to calculate the thermal heat transfer responses using numerical simulations. Continuing from the previous methodology, which provided 3D surface data for a fabric through optical measurements of the fabric microstructure, a simplified 3D solid model, containing a defined unit cell, pattern unit and fabric structure, was prepared. The loft method was used for 3D solid-model generation, and heat transfer calculations, made for the fabric, were then carried out using the 3D solid model. As a result, comprehensive protocols for 3D solid-model generation were established based on the optical measurements of real fabric samples. This method provides an effective means of using 3D information for building 3D models of actual fabrics and applying the model in numerical simulations. The developed process can be used as the basis for other analogous research areas to investigate the physical characteristics of any fabrics.

INFLUENCE OF CAPILLARITY AND ELASTICITY ON MICRO-CONTACTS

  • Zheng, J.;Streator, J.L.
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.65-66
    • /
    • 2002
  • One aspect of the stiction problem may be explained by the action of capillary forces in conjunction with surface elasticity. In the present work, the interaction between two elastic half-spaces separated by a small liquid bridge is investigated. By minimizing the total free energy stored in the interface (including elastic energy and surface energy), the equilibrium interface geometry is determined analytically in the case where there is no solid-solid contact. A non-dimensional number, $N_c=299\frac{{\gamma}^2_{LA}cos^2{\theta}V_o}{E^{'2}H^5}$ is found to govern the structure stability. When $N_c{\ge}1$, the two surfaces jump into solid-solid contact and, once this occurs, the contact area will continue to expand until the two surfaces are in full contact.

  • PDF

수평원관내 부분적으로 채원진 상변화물질의 융해과정 (Experimental Study of Close-Contact Melting of Phase-Change Medium Partially Filled in a Horizontal Cylinder)

  • 서정세;노승탁
    • 대한기계학회논문집
    • /
    • 제19권9호
    • /
    • pp.2249-2260
    • /
    • 1995
  • An experiment of close contact melting of phase-change medium partially filled in an isothermally heated horizontal cylinder is performed which involves the volume expansion of liquid induced by the solid-liquid density difference. The solid-liquid interface motion and the free surface behavior of liquid were reported photographically. The experimental results show that the curvature of upper solid-liquid interface varied to flat as melting progresses. In addition to the varying interface shape, the melting rate increases with the lower initial height of solid and the free surface height of liquid increases linearly. The experimental results of molten mass fraction were expressed in a function of dimensionless time Fo.Ste$^{3}$4/ and agreed well with the analytical solutions.

고체절연 시스템에서 부분방전의 통계적 분포를 이용한 결함의 인식 (Defect Recognition with Statistical Distributions of PD in Solid Insulation)

  • 박정남;김진표;박영국;장동욱;임기조
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 C
    • /
    • pp.1930-1932
    • /
    • 2000
  • PD in defects of solid insulation system is very harmful since it leads to deteriorate insulation system by. the discharge electrons and ions bombarding the insulation surface and the action of chemical products that are formed by discharges. PD is used to detect and recognize defects and degradation of insulation system However, there are still marked difficulties to recognize defects by PD methode. In this paper, we investigated properties of PD of defects in solid insulation by using statical methods and classified PD patterns of surface discharge, electrical tree and void discharge with source of discharge, we used specific distributions such as $H_n(q)$, $H_{an}(\phi)$, $H_n(\phi)$, $H_a(\phi)$ to recognize defects of solid insulation system.

  • PDF

Numerical Analysis of Solid Propellant Ignition ~Numerical Formulation Assessment~

  • Shimada, Toru;Novozhilov, Boris V.
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.528-531
    • /
    • 2004
  • For a simple one-dimensional ignition problem a mathematical model is described to investigate the difficulties in numerical simulations. Some computation results are obtained and comparison is made with analytical solution. Discussions are made on topics such as 1) coordinate transformation, 2) gas-phase and solid-phase analysis; (divergence form of the governing system, a finite-volume discretization, implicit time integration, upwind split flux, spatial accuracy improvement are described. Mass, reagent mass, and energy conservations are solved.), and 3) method to determine quantities on the burning surface (matching). Results obtained for small values of the non-dimensional pressure show a steady-combustion and good agreement with the analytical solution. Numerical instability appeared for larger values of the pressure, discussion on the cause of the problem is made. This effort is a part of a study of flame spread phenomena on solid propellant surface.

  • PDF

Optimization of Monochamus alternatus media and culture period for cordycepin production in Cordyceps militaris culture using solid-state fermentation

  • Ha, Si Young;Jung, Ji Young;Yang, Jae-Kyung
    • 한국버섯학회지
    • /
    • 제19권3호
    • /
    • pp.126-133
    • /
    • 2021
  • In this study, we investigated the effect of solid culture medium on the production of cordycepin in Cordyceps militaris. The regression equation was expressed as follows: Y1 = 755.3-58.6625X1+4.79432E-14X2-46.6625X3-5.66269E-14X1X2-0.025X1X3+1.62475E-14X2X3-160.6625X12+0.0125X22-206.9625X32, where, Y represents the value of cordycepin content (㎍/g), X1 corresponds to the weight of M. alternatus in solid culture medium (g/bottle), X2 to the water content of the solid culture medium (%), and X3 to the culture period (day). The solid culture medium was optimized using the response surface methodology, and the optimal medium composition was as follows: the weight of M. alternatus in solid culture medium and water content were 16.2% and 100.7% (20.14 mL water/20 g solid culture medium), respectively, with a culture period of 39 days. Under these conditions, the cordycepin content of the fruiting bodies reached 150.0 ㎍/g (actual value). The supplementation of M. alternatus in solid culture for improved cordycepin content of C. militaris seems to be a promising alternative to wild and solid cultivation.

적응형 프레임워크 기반의 하이브리드 부호거리장과 표면복원을 이용한 액체와 고체 혼합 표면의 세밀한 표현 (Detailed Representation of Liquid-Solid Mixed Surfaces with Adaptive Framework Based Hybrid SDF and Surface Reconstruction)

  • 김종현
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제23권4호
    • /
    • pp.11-19
    • /
    • 2017
  • 우리는 액체와 고체가 혼합된 표면을 세밀하게 복원하기 위해 하이브리드 부호거리장과 적응형 유체표면기술을 통합한 유체표면복원의 새로운 파이프라인을 제안한다. 이전 입자기반 유체 시뮬레이션은 입자가 불규칙하게 분포 될 때 유체표면에 노이즈 문제가 발생한다. 이 문제를 줄이기 위해 스무딩(Smoothing)기법을 적용하면 반복적인 스무딩과정으로 인해 선명하고 디테일한 유체의 표면적 특징을 소실하여 유체의 디테일이 사라지는 문제가 발생한다. 우리의 방법은 유체를 구성하는 입자기반의 부호거리값과 고체를 구성하는 삼각형기반의 부호거리값을 결합하여 하이브리드 부호거리장을 구성한다. 그리고 적응적으로 유체의 표면을 복원하는 방법을 제안하여 전체적인 효율성을 한 층 개선시킨다. 이렇게 하면 고체와 액체 부분의 세밀한 표면적 특징을 표현할 수 있을 뿐만 아니라 두 재질이 혼합되었을 때도 디테일한 표면의 특징과 부드러운 유체표면을 모두 나타낼 수 있다. 또한, 가이딩 형상이란 개념을 소개하여 부호거리값을 빠르게 얻어 올 수 있는 방법을 제안한다. 결과적으로, 하이브리드 부호거리장과 메쉬 재복원 기술을 적응형 프레임워크에서 통합함으로써 유체표면을 복원하는 파이프라인의 전반적인 효율성을 개선시켰다.