• 제목/요약/키워드: Solid State Fermentation

검색결과 145건 처리시간 0.023초

Metabolic Pathways of Hydrogen Production in Fermentative Acidogenic Microflora

  • Zhang, Liguo;Li, Jianzheng;Ban, Qiaoying;He, Junguo;Jha, Ajay Kumar
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권5호
    • /
    • pp.668-673
    • /
    • 2012
  • Biohydrogen production from organic wastewater by anaerobically activated sludge fermentation has already been extensively investigated, and it is known that hydrogen can be produced by glucose fermentation through three metabolic pathways, including the oxidative decarboxylation of pyruvic acid to acetyl-CoA, oxidation of NADH to $NAD^+$, and acetogenesis by hydrogen-producing acetogens. However, the exact or dominant pathways of hydrogen production in the anaerobically activated sludge fermentation process have not yet been identified. Thus, a continuous stirred-tank reactor (CSTR) was introduced and a specifically acclimated acidogenic fermentative microflora obtained under certain operation conditions. The hydrogen production activity and potential hydrogen-producing pathways in the acidogenic fermentative microflora were then investigated using batch cultures in Erlenmeyer flasks with a working volume of 500 ml. Based on an initial glucose concentration of 10 g/l, pH 6.0, and a biomass of 1.01 g/l of a mixed liquid volatile suspended solid (MLVSS), 247.7 ml of hydrogen was obtained after a 68 h cultivation period at $35{\pm}1^{\circ}C$. Further tests indicated that 69% of the hydrogen was produced from the oxidative decarboxylation of pyruvic acid, whereas the remaining 31% was from the oxidation of NADH to $NAD^+$. There were no hydrogen-producing acetogens or they were unable to work effectively in the anaerobically activated sludge with a hydraulic retention time (HRT) of less than 8 h.

Fungal Growth and Manganese Peroxidase Production in a Deep Tray Solid-State Bioreactor, and In Vitro Decolorization of Poly R-478 by MnP

  • Zhao, Xinshan;Huang, Xianjun;Yao, Juntao;Zhou, Yue;Jia, Rong
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권6호
    • /
    • pp.803-813
    • /
    • 2015
  • The growth of Irpex lacteus F17 and manganese peroxidase (MnP) production in a selfdesigned tray bioreactor, operating in solid-state conditions at a laboratory scale, were studied. The bioreactor was divided into three layers by three perforated trays. Agroindustrial residues were used both as the carrier of bound mycelia and as a nutrient medium for the growth of I. lacteus F17. The maximum biomass production in the bioreactor was detected at 60 h of fermentation, which was consistent with the CO2 releasing rate by the fungus. During the stationary phase of fungal growth, the maximum MnP activity was observed, reaching 950 U/l at 84 h. Scanning electron microscopy images clearly showed the growth situation of mycelia on the support matrix. Furthermore, the MnP produced by I. lacteus F17 in the bioreactor was isolated and purified, and the internal peptide sequences were also identified with mass spectrometry. The optimal activity of the enzyme was detected at pH 7 and 25℃, with a long half-life time of 9 days. In addition, the MnP exhibited significant stability within a broad pH range of 4-7 and at temperature up to 55℃. Besides this, the MnP showed the ability to decolorize the polymeric model dye Poly R-478 in vitro.

Bioprocess Strategies and Recovery Processes in Gibberellic Acid Fermentation

  • Shukla, Ruchi;Srivastava, Ashok K.;Chand, Subhash
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제8권5호
    • /
    • pp.269-278
    • /
    • 2003
  • Gibberellic acid (GA$_3$) is a commercially important plant growth hormone, which is gaining much more attention all over the world due to its effective use in agriculture and brewing industry. Industrially it is produced by submerged fermentation technique using Ascomycetous fungus Gibberella fujikuroi. Solid state and immobilized cell fermentation techniques had also been developed as an alternative to obtain higher yield of GA$_3$. This review summarizes the problems of GA$_3$ fermentation such as production of co-secondary metabolites along with GA$_3$, substrate inhibition and degradation of GA$_3$ to biologically inert compound gibberellenic acid, which limits the yield of GA$_3$ in the fermentation medium. These problems can be overcome by various bioprocessing strategies e.g. two - stage and fed batch cultivation processes. Further research on bioreactor operation strategies such as continuous and / or extractive fermentation with or without cell recycle / retention system need to be investigated for improvement in yield and productivity. Down stream processing for GA$_3$ isolation is also a challenge and procedures available for the same have been critically evaluated.

Effect of Different Pretreatment Methods on the Bioconversion of Rice Bran into Ethanol

  • Eyini, M.;Rajapandy, V.;Parani, K.;Lee, Min-Woong
    • Mycobiology
    • /
    • 제32권4호
    • /
    • pp.170-172
    • /
    • 2004
  • The efficiency of acid, enzyme and microbial pretreatment of rice bran was compared based on the content of cellulose, hemicellulose, reducing sugars and xylose in the substrate. An isolate of Aspergillus niger or a strain of Trichoderma viride(MTCC 800) was employed for microbial pretreatment of rice bran in solid state. Acid pretreatment resulted in the highest amount of reducing sugars followed by enzyme and microbial pretreatment. A. niger showed a higher rate of hydrolysis than T. viride. The rice bran hydrolysate obtained from the different methods was subsequently fermented to ethanol either by Zymomonas mobilis(NCIM 806) or by Pichia stipitis(NCIM 3497). P. stipitis fermentation resulted in higher ethanol(37% higher) and biomass production($76{\sim}83%$ higher) than those of Z. mobilis. Maximum ethanol production resulted at 12h in Zymomonas fermentation, while in Pichia fermentation, it was observed at 60h. Microbial pretreatment of rice bran by A. niger followed by fermentation employing P. stipitis was more efficient but slower than the other microbial pretreatment and fermentation.

Production and Characterization of a Novel Protease from Bacillus sp. RRM1 Under Solid State Fermentation

  • Rajkumar, Renganathan;Ranishree, Jayappriyan Kothilmozhian;Ramasamy, Rengasamy
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권6호
    • /
    • pp.627-636
    • /
    • 2011
  • A commercially important alkaline protease, produced by Bacillus sp. RRM1 isolated from the red seaweed Kappaphycus alvarezii (Doty) Doty ex Silva, was first recognized and characterized in the present study. Identification of the isolated bacterium was done using both biochemical characterization as well as 16S rRNA gene sequencing. The bacterial strain, Bacillus sp. RRM1, produced a high level of protease using easily available, inexpensive agricultural residues solid-state fermentation (SSF). Among them, wheat bran was found to be the best substrate. Influences of process parameters such as moistening agents, moisture level, temperature, inoculum concentration, and co-carbon and co-nitrogen sources on the fermentation were also evaluated. Under optimized conditions, maximum protease production (i.e., 2081 U/g) was obtained from wheat bran, which is about 2-fold greater than the initial conditions. The protease enzyme was stable over a temperature range of 30-$60^{\circ}C$ and pH 6-12, with maximum activity at $50^{\circ}C$ and pH 9.0. Whereas the metal ions $Na^+$, $Ca^{2+}$, and $K^+$ enhanced the activity of the enzyme, others such as $Hg^{2+}$, $Cu^{2+}$, $Fe^{2+}$, $Co^{2+}$, and $Zn^{2+}$ had rendered negative effects. The activity of the enzyme was inhibited by EDTA and enhanced by $Cu^{2+}$ ions, thus indicating the nature of the enzyme as a metalloprotease. The enzyme showed extreme stability and activity even in the presence of detergents, surfactants, and organic solvents. Moreover, the present findings opened new vistas in the utilization of wheat bran, a cheap, abundantly available, and effective waste as a substrate for SSF.

예비발효 및 압출조리 전처리가 쌀-대두분 혼합액의 유산균 발효에 미치는 영향 (Effects of Prefermentation and Extrusion Cooking on the Lactic Fermentation of Rice-Soybean Based Beverage)

  • 이철호;무사수안네;류기형
    • 한국식품과학회지
    • /
    • 제20권5호
    • /
    • pp.666-673
    • /
    • 1988
  • 쌀을 기질로 하는 유산균 음료 발효에서 Bacillus와 효모의 혼합배양을 이용한 고체상태 예비발효와 extruder를 이용한 압출조리 전처리가 유산균의 생육을 증진하는 효과에 대하여 검토하였다. Bacillus laevolacticus와 Saccharomyces cerevisiae의 혼합배양을 쌀과 탈지 대두분의 혼합물에 접종하여 고체 상태로 $45^{\circ}C$에서 배양한 후 자가발열형 단일축 압출성형기를 통하여 처리함으로서 살균과 조직의 변화를 도모하였다. 이렇게 처리된 물질을 분산액으로 만들어 Lactobacillus plantarum과 Leuconostoc mesenteroides 혼합배양을 접종하여 유산발효시켰다. 예비발효와 압출조리에 의하여 유산균의 증식속도와 산생성이 증가하였으며 가용성 고형분의 함량이 크게 증가하였고 분산안정성이 향상되었고 관능적 기호도도 증가하였다.

  • PDF

Xylanase와 Mannanase를 생산하는 Aspergillus niger의 분리와 동정에 관한 연구 (Studies on the Isolation and Identification of Xylanase and Mannanase Producing Aspergillus niger)

  • 김병석;조진국;송진욱;이학교;황성구
    • Journal of Animal Science and Technology
    • /
    • 제51권5호
    • /
    • pp.427-432
    • /
    • 2009
  • 본 연구에서는 xylanase, mannanase를 생산하는 미생물균주를 분리하기 위해 1차로 토양 및 낙엽 등에서 곰팡이 균주를 약 50여주 분리하였으며, 1차 선발된 균주로부터 xylanase, mannanase를 생산하는 미생물 분리를 위해 xylanase 생성균주 선별배지, mannanase 생성균주 선별배지에 single colony를 접종한 후 clear zone이 생기는 15종의 균주를 2차 선발하였다. 2차 선발된 균주를 개별적으로 배양하여, DNS 방법을 활용하여 xylanase, mannanase 효소활성을 측정하여 6종의 균주를 선발하였다. 선별된 균주는 액상배양에서 생산한 xylanase, mannanase 효소활성이 각각 0.9~1.6 unit/mL, 0.2~0.4 unit/mL 범위로 나타났다. 이 중 결과가 좋은 3종을 선정하여 고상배양으로 배양한 균주의 xylanase, mannanase 효소활성은 각각 103.7~220.0 unit/g, 20.1~40.3 unit/g으로 분석되었다. 선별된 3종의 균주중 xylanase, mannanase 효소활성이 각각 197.3 unit/g, 39.9 unit/g으로 가장 높은 E-3 균주를 최종적으로 선발하였다. 최종으로 분리한 E-3 균주는 형태학적 특징과 DNA 염기서열을 비교한 결과 Aspergillus niger와 99% 일치하였다.

Characterization of the Functional Properties of Soy Milk Cake Fermented by Bacillus sp.

  • Oh, Soo-Myung;Kim, Chan-Shick;Lee, Sam-Pin
    • Food Science and Biotechnology
    • /
    • 제15권5호
    • /
    • pp.704-709
    • /
    • 2006
  • The mucilage production and tyrosine content in soy milk cake (SMC) fermented by Bacillus firmus NA-1, Bacillus subtilis GT-D, and B. subtilis KU-A was improved by fortification with 10% defatted soybean flour. The fibrinolytic activity and consistency of the SMC were drastically increased by solid-state fermentation for 1 day. However, the consistency of the fermented SMC gradually decreased during fermentation for 3 days. Furthermore, the tyrosine content of the freeze-dried powder of SMC fermented by three Bacillus sp. was 9 times higher than that of unfermented SMC. The soybean proteins, including the 7S and 11S subunits, were partially digested during alkaline fermentation, producing lower molecular-weight peptides. The fibrinolytic enzyme produced in SMC fermented by B. firmus NA-l and B. subtilis KU-A exhibited higher thermal stability than that of B. subtilis GT-D fermentation. The powder obtained from B. subtilis GT-D fermentation had an ${\alpha}$-amylase activity and lower consistency compared to those of B. firmus NA-1 and B. subtilis KU-A. In addition, this powder contained 6.3% moisture content, 27% crude protein content and 9 units of fibrinolytic activity and proteolytic activity.

Fungal bioconversion of Korean food wastes for the production of animal feed additive enzymes

  • 정윤승;정상원;조아라;권순우;한승호
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2001년도 추계학술발표대회
    • /
    • pp.529-532
    • /
    • 2001
  • Korean food waste, one of the abundantly available but environmentally problematic organic wastes in Korea, was utilized as solid-substrate by fungal strain Aspergillus niger ATcC 6275 for the production of enzymemixture containing amylase, cellulase and xylanase. The enzyme mixture can be used as high value-added animal feed. Solid-state fermentation method yielded a 84-fold enhancement in xylanase activity compared with submerged fermentation method. The effect of incubation period, incubation temperature, pH of medium, moisture content, inoculum size and enrichment of the medium with nitrogen and carbon sources were observed for optimal production of these enzymes The optimal amylase activity of 33.10 U/g, cellulase activity of 24.41 U/g, xylanase activity of 328.84 U/g were obtained at 8 days incubation with 50%(w/w) soy bean flake, with incubation temperature of $25^{\circ}C$, pH of 6.38, optimal moisture content of 55% and with inoculum size of $3.8{\times}10^6$spore/g. Enzyme activities were enhanced when ImM $CaSO_4$, 2% Malt extract and 2% galactose were added as mineral, nitrogen and carbon enrichment respectively.

  • PDF