• Title/Summary/Keyword: Solid Solution Strengthening

Search Result 45, Processing Time 0.028 seconds

The Study of Heat Resistant Aluminum Alloy with CrW Homogeneous Solid Solution (CrW 전율고용체 첨가 내열 알루미늄 합금에 관한 연구)

  • Kim, Jin-Pyeong;Sung, Si-Young;Han, Beom-Suck;Kim, Sang-Ho
    • Journal of Korea Foundry Society
    • /
    • v.33 no.3
    • /
    • pp.122-126
    • /
    • 2013
  • Recently, heat-resistant aluminum alloy has been re-focused as a downsizing materials for the internal combustion engines. Heat-resistant Al alloy development and many researches are still ongoing for the purpose of improving thermal stability, high-temperature mechanical strength and fatigue properties. The conventional principle of heat-resistant Al alloy is the precipitation of intermetallic compounds by adding a variety of elements is generally used to improve the mechanical properties of Al alloys. Heat resistant aluminum alloys have been produced by CrW homogeneous solid solution to overcome the limit of conventional heat resistant aluminum alloy. From EPMA, it is found that CrW homogeneous soild solution phases with the size of $50-100{\mu}m$ have been dispersed uniformly, and there is no reaction between aluminum and CrW alloy. In addition, after maintaining at high temperature of 573 K, there is no growth of hardening phase, nor desolved, but CrW still exists as a homogeneous solid solution.

On the Strengthening mechanisms of INCONEL 690 (인코넬 690의 강화기구에 관한 연구)

  • 허무영;박용수;안성욱
    • Transactions of Materials Processing
    • /
    • v.6 no.3
    • /
    • pp.213-220
    • /
    • 1997
  • The microstructure of the inconel 690 alloy was varied by the solution treatment and the thermal treatment. The specimens having different microstructures were examined in order to understand the strengthening mechanism of the inconel 690. The level of supersaturation of carbon in the solid solution was increased by applying a longer solution treatment at 115$0^{\circ}C$. As increased carbon content in the solid solution, more carbides precipitated during the thermal treatment at $700^{\circ}C$. Since the carbides played a role of obstacle on the movement of dislocations, a higher tensile strength was obtained in the sample having a large number of carbider. The accumulation of dislocations at the grain boundary carbides caused the development of intergranular fracture which led to a lower elongation.

  • PDF

Development of High-strength, High-temperature Nb-Si-Ti Alloys through Mechanical Alloying (기계적 합금화를 통한 고강도-고내열 Nb-Si-Ti계 합금 개발에 관한 연구)

  • Jung-Joon Kim;Sang-Min Yoon;Deok-Hyun Han;Jongmin Byun;Young-Kyun Kim
    • Journal of Powder Materials
    • /
    • v.31 no.1
    • /
    • pp.30-36
    • /
    • 2024
  • The aerospace and power generation industries have an increasing demand for high-temperature, high-strength materials. However, conventional materials typically lack sufficient fracture toughness and oxidation resistance at high temperatures. This study aims to enhance the high-temperature properties of Nb-Si-Ti alloys through ball milling. To analyze the effects of milling time, the progression of alloying is evaluated on the basis of XRD patterns and the microstructure of alloy powders. Spark plasma sintering (SPS) is employed to produce compacts, with thermodynamic modeling assisting in predicting phase fractions and sintering temperature ranges. The changes in the microstructure and variation in the mechanical properties due to the adjustment of the sintering temperature provide insights into the influence of Nb solid solution, Nb5Si3, and crystallite size within the compacts. By investigating the changes in the mechanical properties through strengthening mechanisms, such as precipitation strengthening, solid solution strengthening, and crystallite refinement, this study aims to verify the applicability of Nb-Si-Ti alloys in advanced material systems.

Effect of Al Solution Strengthening on Damping Capacities of Mg-Al Alloy Solid Solutions (Al 고용 강화가 Mg-Al 합금 고용체의 진동감쇠능에 미치는 영향)

  • Joong-Hwan Jun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.5
    • /
    • pp.221-227
    • /
    • 2024
  • The damping capacities in the strain-amplitude dependent and strain-amplitude independent regions were comparatively investigated for pure Mg and Mg-X%Al solid solutions (X : 1, 2 at%) to clarify the role of Al solute in the damping properties of Mg-Al binary solid solution. In order to rule out the effect of grain size on damping capacity, grain sizes of the samples were adjusted to an almost similar level by changing the heat-treatment or solution treatment times at 683 K (12 h, 24 h and 32 h for pure Mg, Mg-1%Al and Mg-2%Al alloys, respectively). The damping capacities of the heat-treated pure Mg and Mg-X%Al solid solutions exhibited a decreasing tendency with an increase in Al concentration both in the strain-amplitude dependent and strain-amplitude independent regions. The observed damping trends depending on strain-amplitude were analyzed and discussed in association with decreasing length between weak pinning points (Al solutes) in Granato-Lücke model.

The high thermal stability induced by a synergistic effect of ZrC nanoparticles and Re solution in W matrix in hot rolled tungsten alloy

  • Zhang, T.;Du, W.Y.;Zhan, C.Y.;Wang, M.M.;Deng, H.W.;Xie, Z.M.;Li, H.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2801-2808
    • /
    • 2022
  • The synergistic effect of ZrC nanoparticle pining and Re solution in W matrix on the thermal stability of tungsten was studied by investigating the evolution of the microstructure, hardness and tensile properties after annealing in a temperature range of 1000-1700 ℃. The results of metallography, electron backscatter diffraction pattern and Vickers micro-hardness indicate that the rolled W-1wt%Re-0.5 wt% ZrC alloy has a higher recrystallization temperature (1600 ℃-1700 ℃) than that of the rolled pure W (1200 ℃), W-0.5 wt%ZrC (1300 ℃), W-0.5 wt%HfC (1400-1500 ℃) and W-K-3wt%Re alloy fabricated by the same technology. The molecular dynamics simulation results indicated that solution Re atoms in W matrix can slow down the self-diffusion of W atoms and form dragging effect to delay the growth of W grain, moreover, the diffusion coefficient decrease with increasing Re content. In addition, the ZrC nanoparticles can pin the grain boundaries and dislocations effectively, preventing the recrystallization. Therefore, synergistic effect of solid solution Re element and dispersed ZrC nanoparticles significantly increase recrystallization temperature.

Effect of Cr Addition on the High Temperature Deformation Behavior of Fe-Al Intermetallics (Fe-Al 금속간 화합물의 고온변형거동에 미치는 Cr 첨가의 효과)

  • Bang W.;Lim H. T.;Ha T. K.;Song J. H.;Chang Y. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.167-171
    • /
    • 2001
  • High temperature deformation behavior of Fe-28Al-5Cr alloy has been investigated known to show anomalous temperature dependence of yield strength. Specifically, the effect of Cr addition has been examined. A series of tensile and load relaxation tests have been carried out to obtain the flow behavior of Fe-28Al-5Cr alloy at the elevated temperatures. The flow curves have then been analyzed using the inelastic deformation theory recently proposed. Firstly, high temperature flow stress of iron aluminides can be resolved into internal stress and frictional stress. Secondly, the temperature corresponding to peak strength gets higher level at faster strain rate, which presumably due to the increased contribution of internal stress in observed flow stress. And thirdly, the alloying of Cr seems to cause solid-solution strengthening of frictional stress level and the elevation of 2nd order transition temperature. In this analogy, Fe-28Al-5Cr exhibits better strength especially at relatively higher temperature and lower strain rate than Fe-28Al.

  • PDF

Changes in Mechanical Properties according to Solid Solution Treatment of Cu-1.6%Co-0.38%Si Alloy (Cu-1.6%Co-0.38%Si 합금의 용체화처리에 따른 기계적 성질의 변화)

  • Kwak, Wonshin;Lee, Sidam
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.6
    • /
    • pp.277-283
    • /
    • 2020
  • Cu-Co-Si based alloy has a strengthening mechanism for Co2Si intermetallic compounds deposited on the copper matrix after aging treatment and the solution treatment has a key influence on the strength and electrical conductivity of the final products. In this paper, the Cu-1.6%Co-0.38%Si alloy was fixed at the time and the solution treatment temperature was set at a temperature in the range of 800 to 950℃, and the change in mechanical properties was observed by fixing the temperature at 950℃ and changing the time. The microstructure was observed using an electron microscope and an optical microscope, and the changes in hardness, electrical conductivity, and bending workability after aging treatment were investigated. When the solution treatment time is less than 20 seconds, the solution treatment is not sufficient and the formation of precipitates contributing to the increase in hardness decreases and the hardness decreases after the aging treatment, and in more than 50 seconds, the hardness decreases due to the coarsening of the grains and the bending workability got worse.

Palladium-Nickel Alloy Electrodeposition Using Ethylenediamine as Complexing Agent (에틸렌디아민을 착화제로 사용하는 팔라듐-니켈 합금도금)

  • Choi, Byungha;Sohn, Ho-Sang;Kim, Kyung Tae;Son, Injoon
    • Journal of Surface Science and Engineering
    • /
    • v.47 no.5
    • /
    • pp.215-220
    • /
    • 2014
  • Electrodeposition behaviors of Pd-Ni alloys were investigated from the polarization curves in a solution containing ethylenediamine as complexing agent. The microstructure and hardness of electrodeposited Pd-Ni alloys were also characterized. Codeposition of Pd-Ni alloys was successfully performed in the wide current density ranging from 2 to $5000A{\cdot}m^{-2}$ because the deposition potential of Pd became close to that of Ni in the ethylenediamine-contained solution. It was also found from X-ray diffraction patterns that the solid solution between Pd and Ni was formed with variation of the composition of alloys. The measured hardness of Pd-Ni alloys increased with increasing the contents of Ni due to solid solution strengthening and grain refinement. The electrodeposited Pd-Ni alloys also exhibited a crack free smooth surface morphology from the SEM observation.

Microstructural Feature and Aging Characteristics of Spray-Formed Cu-5Ni-10Sn Alloy (가스분무성형 Cu-5Ni-10Sn 합금의 미세조직 및 시효강화)

  • Roh, Dae-Gyun;Kang, Hee-Soo;Baik, Kyeong-Ho
    • Journal of Powder Materials
    • /
    • v.19 no.4
    • /
    • pp.317-321
    • /
    • 2012
  • In this study, Cu-5Ni-10Sn(wt%) spinodal alloy was manufactured by gas atomization spray forming, and the microstructural features and mechanical properties of Cu-5Ni-10Sn alloy have been investigated during homogenization, cold working and age-hardening. The spray formed Cu-5Ni-10Sn alloy consisted of an equiaxed microstructure with a mixture of solid solution ${\alpha}$-(CuNiSn) grains and lamellar-structure grains. Homogenization at $800^{\circ}C$ and subsequent rapid quenching formed a uniform solid solution ${\alpha}$-(CuNiSn) phase. Direct aging at $350^{\circ}C$ from the homogenized Cu-5Ni-10Sn alloy promoted the precipitation of finely distributed ${\gamma}$' or ${\gamma}-(Cu,Ni)_3Sn$ phase throughout the matrix, resulting in a significant increase in microhardness and tensile strength. Cold working prior to aging was effective in strengthening Cu-5Ni-10Sn alloy, which gave rise to a maximum tensile strength of 1165 MPa. Subsequent aging treatment slightly reduced the tensile strength to 1000-1100 MPa due to annealing effects.

Effect of Oxygen Content on Aging Properties of Ti-39Nb-6Zr alloy (Ti-39Nb-6Zr 합금의 산소함량에 따른 시효특성 변화)

  • Han, Chan Byeol;Lee, Dong-Geun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.2
    • /
    • pp.88-95
    • /
    • 2022
  • Titanium alloy for bio-medical applications have been developed to reduce the toxicity of alloying elements and avoid the stress-shielding effect which is caused by relatively high elastic modulus compared to bone. Ti-39Nb-6Zr (TNZ40) alloy of elastic modulus exhibits around 40 GPa in the case of beta single phase. However, the strength of this alloy is lower than the other types of titanium alloys. Many research found that adding oxygen to beta-titanium alloys is beneficial for improving the strength through solid solution strengthening. In this study, TNZ40 ingots with addition of O were prepared by an arc remelting process (Ti-39Nb-6Zr-0.16O (wt.%), Ti-39Nb-6Zr-0.26O (wt.%)). Thermo-mechanical processing (i.e., heat treatment, cold swaging and aging heat treatment) has been performed under various conditions. Therefore, the aim of this study is to investigate the effect of oxygen content and ω phase formation on microstructure and mechanical properties.