• 제목/요약/키워드: Solid Modeling

검색결과 610건 처리시간 0.024초

의사 솔리드 모델의 캐비티 및 코어판 생성 (Generation of Cavity and Core Plates of an Injection Mold for a Pseudo-Solid Part Model)

  • 장진우;이상헌;임성락
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1601-1604
    • /
    • 2003
  • This paper describes a split operation for generation of core and cavity plates of an injection mold for a pseudo-solid model of a plastic part. Here, a pseudo-solid model means a sheet model that looks like a solid model. but whose boundary is not closed. When a solid model created in a different CAD system is imported through standard data exchange format, a pseudo-solid model is created in most cases as tolerance or some other problems make sewing operation failed. As most existing mold design system based on solid modeling kernels require a complete part solid model, mold designers have to do time-consuming healing operations to convert a pseudo-solid to solid. The essential capability of mold design system is the split operation for generation of core and cavity plates. Thus. we developed a split operation for pseudo-solid part model to eliminate or reduce healing preprocessing for mold design.

  • PDF

의사 솔리드 부품 모델에 대한 금형 설계 시스템의 개발 (Development of Injection Mold Design System for Pseudo-Solid Part Models)

  • 이상헌;임성락;이강수
    • 한국CDE학회논문집
    • /
    • 제10권3호
    • /
    • pp.151-161
    • /
    • 2005
  • This paper describes the parting and Boolean operations for a pseudo-solid model of a plastic part, and their application to injection mold design. Here, a pseudo-solid model means a sheet model that looks like a solid model, but its boundary is not closed. When a solid model created in a different CAD system is imported through a standard data exchange file format, in most cases, a pseudo-solid model may be created due to tolerance or some other problems. However, most existing mold design systems based on solid modeling kernels require a complete part solid model. Therefore, mold designers have to do time-consuming healing operations to convert a pseudo-solid to solid. To eliminate or reduce the healing pre-process for mold design, in this paper, we proposed the parting and Boolean Operations on pseudo-solid part models. This paper also describes their detailed implementation and a case study.

형상 모델링을 위한 음함수 객체의 설계 및 구현 (The Design and Implementation of Implicit Object Classes for Geometric Modeling System)

  • 박상근;정성엽
    • 한국CDE학회논문집
    • /
    • 제13권3호
    • /
    • pp.187-199
    • /
    • 2008
  • This paper describes a C++ class hierarchy of implicit objects for geometry modeling and processing. This class structure provides a software kernel for integrating many various models and methods found in current implicit modeling areas. The software kernel includes primitive objects playing a role of unit element in creating a complex shape, and operator objects used to construct more complex shape of implicit object formed with the primitive objects and other operators. In this paper, class descriptions of these objects are provided to better understand the details of the algorithm or implementation, and its instance examples to show the capabilities of the object classes for constructive shape geometry. In addition, solid modeling system shown as an application example demonstrates that the proposed implicit object classes allow us to carry out modern solid modeling techniques, which means they have the capabilities to extend to various applications.

산업용 고체 처리 공정 - 입자 반응 및 고정층 반응기 모델링 (Industrial Solids Processing Applications - Particle Reaction Models and Bed Reactor Models)

  • 안형준;최상민
    • 한국연소학회지
    • /
    • 제22권2호
    • /
    • pp.27-35
    • /
    • 2017
  • This paper reviews the previous industrial solid bed process simulations to provide a better understanding of the modeling approaches to the particle reactions in the bed. Previous modeling studies on waste incinerator, iron ore sintering bed, blast furnace, iron ore pellet indurator, and biomass combustor can be seen on the common ground of unsteady 1-D modeling scheme. Approaches to the particle reaction modeling have been discussed in terms of the status of solid particles in the bed, types of reaction progression in a particle, and the consideration of the intra-particle temperature gradient.

Solid Modeling 기법을 응용한 복합곡면 가공에 있어서 공구간섭 제거 (Tool Interference Avoidance in compound Surface Using solid Modeling Method)

  • 장동규
    • 한국생산제조학회지
    • /
    • 제5권2호
    • /
    • pp.20-28
    • /
    • 1996
  • Compound surface modeling is widely used for die cavities and punches. A compound surface is defined in 3-D space by specifying the topological relationship of several anlytic surface elements and a sculptured surface. A constructive solid gemonetry scheme is employed to model the analytic compound surface. the desired compound surface can be accomplished by specifying topological reationship in terms of boolean relations between pimitives and the sculptured surfaces. Additionally, a method is presented for checking and avoiding the tool interference occuued in machining the compound surface. Using this method. the interference of concave, convex, and side region can be checked easily and avoided rpapidly.

  • PDF

플립칩 패키지에서 UBM 및 IMC 층의 형상 모델링 (Solid Modeling of UBM and IMC Layers in Flip Chip Packages)

  • 신기훈;김주한
    • 한국공작기계학회논문집
    • /
    • 제16권6호
    • /
    • pp.181-186
    • /
    • 2007
  • UBM (Under Bump Metallurgy) of flip chip assemblies consists of several layers such as the solder wetting, the diffusion barrier, and the adhesion layers. In addition, IMC layers are formed between the solder wetting layers (e.g. Cu, Ni) and the solder. The primary failure mechanism of the solder joints in flip chips is widely known as the fatigue failure caused by thermal fatigues or electromigration damages. Sometimes, the premature brittle failure occurs in the IMC layers. However, these phenomena have thus far been viewed from only experimental investigations. In this sense, this paper presents a method for solid modeling of IMC layers in flip chip assemblies, thus providing a pre-processing tool for finite element analysis to simulate the IMC failure mechanism. The proposed modeling method is CSG-based and can also be applied to the modeling of UBM structure in flip chip assemblies. This is done by performing Boolean operations according to the actual sequences of fabrication processes

다중 고체상을 고려한 고체 연료층 연소 모델링 (Combustion Modeling of a Solid Fuel Bed with Consideration of the Multiple Solid Phases)

  • 양원;류창국;최상민
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 제26회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.119-127
    • /
    • 2003
  • In this study we propose an unsteady I-dimensional model of bed combustion with multiple solid phases, which confers a phase on each solid material. This model can be applied to a variety of bed combustion cases of various configurations and ignition methods. It contains fuel combustion, gaseous reaction, heat transfers between each phase, and geometric changes of the solid particles. An iron ore sintering pot is selected for verifying the model validity and simulation results are compared with the limited experimental data set of various coke contents and air supply rates. They predict the experimental results well and show applicabilities to the various system of the fuel bed with various solid materials.

  • PDF

Feature-Based Multi-Resolution Modeling of Solids Using History-Based Boolean Operations - Part II : Implementation Using a Non-Manifold Modeling System -

  • Lee Sang Hun;Lee Kyu-Yeul;Woo Yoonwhan;Lee Kang-Soo
    • Journal of Mechanical Science and Technology
    • /
    • 제19권2호
    • /
    • pp.558-566
    • /
    • 2005
  • We propose a feature-based multi-resolution representation of B-rep solid models using history-based Boolean operations based on the merge-and-select algorithm. Because union and subtraction are commutative in the history-based Boolean operations, the integrity of the models at various levels of detail (LOD) is guaranteed for the reordered features regardless of whether the features are subtractive or additive. The multi-resolution solid representation proposed in this paper includes a non-manifold topological merged-set model of all feature primitives as well as a feature-modeling tree reordered consistently with a given LOD criterion. As a result, a B-rep solid model for a given LOD can be provided quickly, because the boundary of the model is evaluated without any geometric calculation and extracted from the merged set by selecting the entities contributing to the LOD model shape.

3D Modeling of a Fabric based on its 3D Microstructure Image and Application of the Model of the Numerical Simulation of Heat Transfer

  • Lee, Hyojeong;Lee, Heeran;Eom, Ran-i;Lee, Yejin
    • 패션비즈니스
    • /
    • 제20권3호
    • /
    • pp.30-42
    • /
    • 2016
  • The objective of this study was to perform 3D solid modeling from 3D scanned surface images of cotton and silk in order to calculate the thermal heat transfer responses using numerical simulations. Continuing from the previous methodology, which provided 3D surface data for a fabric through optical measurements of the fabric microstructure, a simplified 3D solid model, containing a defined unit cell, pattern unit and fabric structure, was prepared. The loft method was used for 3D solid-model generation, and heat transfer calculations, made for the fabric, were then carried out using the 3D solid model. As a result, comprehensive protocols for 3D solid-model generation were established based on the optical measurements of real fabric samples. This method provides an effective means of using 3D information for building 3D models of actual fabrics and applying the model in numerical simulations. The developed process can be used as the basis for other analogous research areas to investigate the physical characteristics of any fabrics.

도면을 이용한 3D 모델링 CAD 시스템 (CAD system for 3D modeling using engineering drawings)

  • 이창조;김창헌;황종선
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 1995년도 춘계공동학술대회논문집; 전남대학교; 28-29 Apr. 1995
    • /
    • pp.891-895
    • /
    • 1995
  • This paper describes a solid modeling system based on a systematic description of techniques for analyzing and understanding on engineering drawings. Main stress is placed on clarifying the difference between the drawing understanding and the drawing recognition. The former, in which we feel major interest, is intrinsically a difficult problem because it inherent contains combinatorial search to require more than polynomial time. Actually, understanding drawings is regarded as a process to recover the information lost in projection 3-D objects to 2-D drawings. But, solid modeling by automatic understanding of the given drawings is one of the promising approach, which is described precisely in the text. Reviewing the studies performed so far, we summarize the future direction of the project and inevitable open problems left.

  • PDF