• Title/Summary/Keyword: Solid Formulation

Search Result 260, Processing Time 0.03 seconds

Numerical Simulation of Two-Phase Flow for Gas-Solid Particles (가스와 입자가 혼합된 2상 유동에 관한 수치해석적 연구)

  • Jung H.;Choi J. W.;Park C. G.
    • Journal of computational fluids engineering
    • /
    • v.6 no.4
    • /
    • pp.8-14
    • /
    • 2001
  • The phenomena of two-phase suspension flows appear widely in nature and industrial processes. Hence, it is of great importance to understand the mechanism of the gas-solid two-phase flows. In the present study, the numerical simulation has been approached by utilizing the Eulerian-Lagrangian methodology for describing the characteristics of the fluid and particulate phases in a vertical pipe and a 90°square-sectioned bend. The continuous phase(gas phase) is described by the Eulerian formulation and a κ-ε turbulence model is employed to find mean and turbulent properties of the gas phase. The particle properties(velocity and trajectory) are then described by a Lagrangian approach and computed using the mean velocity and turbulent fluctuating velocity of the gas phase. The predictions are compared with measurements by laser-Doppler velocimeter for the validation. As a result, the calculated results show good agreements.

  • PDF

Effect of Different Solid Lubricants in the Automotive Friction Material on Friction Characteristics (자동차 브레이크용 마찰재에 사용되는 고체 윤활제에 따른 제동특성에 관한 연구)

  • Lee, Jung-Ju;Jang, Ho
    • Tribology and Lubricants
    • /
    • v.14 no.3
    • /
    • pp.17-23
    • /
    • 1998
  • Friction materials with three different formulations containing different solid lubricants were investigated to study the role of lubricants on the friction performance. The three friction materials contained graphite 10 vol.%, graphite 7 vol.%+$MoS_2$ 3 vol.%, and graphite 7 vol.%+$Sb_2S_3$ 3 vol.%, respectively, with the same amount of other ingredients. Results of this work showed that each formulation with different lubricants had unique advantages and disadvantages. The friction materials containing graphite 7 vol.%+$MoS_2$ 3 vol.% and graphite 7 vol.%+$Sb_2S_3$ 3 vol.% showed better resistance to fading and improved friction stability compared to the friction materials containing graphite only as a lubricant. However, the friction materials with two lubricants (graphite+$MoS_2$ or $Sb_2S_3$) showed disadvantages on DTV generation and rotor wear.

Thermal History Analysis and Solid Fraction Prediction of Gas-Atomized Alloy Droplets during Spray Forming (분무성형 공정에서 분무액적의 열이력 해석 및 고상분율 예측)

  • 이언식
    • Journal of Powder Materials
    • /
    • v.1 no.1
    • /
    • pp.85-94
    • /
    • 1994
  • In order to predict droplet velocity and temperature profiles and fractional solidification with flight distance during spray forming, the Newtonian heat transfer formulation has been coupled with the classical heterogeneous nucleation and the specific solidification process. It has been demonstrated that the thermal profile of the droplet in flight is significantly affected by process parameters such as droplet size, initial gas velocity, undercooling. As the droplet size and/or the initial gas velocity increase, the onset and completion of solidification are shifted to greater flight distances and the solidification process also extends over a wider range of flight distances. The amounts of solid fractions formed during recoalescence, segregated solidification and eutectic solidification are insensitive to droplet size and initial gas velocity whereas those are strongly affected by the degree of undercooling. There are good linear relations between the undercooling and the corresponding solid fractions generated during recoalesced, segregated and eutectic stages.

  • PDF

Development of Hydraulic Testing Machine for Flexible Seal on Solid Rocket Motor (고체모터 플렉시블 씰을 위한 수압시험장치 개발)

  • Kwon, Tae-Hoon;Rho, Tae-Ho;Kim, Byung-Hun;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.227-230
    • /
    • 2008
  • Movable nozzle with a flexible seal have been used for Thrust Vector Control of the Solid Rocket Motor. The Hydraulic Testing Machine is consisted of Chamber, Actuator, Counterpotentiometer, and evaluates performance of Flexible seal for spring torque and axial compression. The qualification test of Flexible seal was conducted on design condition. A study fix up method of formulation, operation, inspection on Hydraulic testing machine.

  • PDF

Evaluation of solid surface properties by analysis of liquid penetration rate into powder bed - Examination of surface free energy -

  • Choi, Woo-Sik;Ha, Jong-Hak
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.236.1-236.1
    • /
    • 2003
  • Evaluation of solid surface properties is very important for formulation of solid dosage form, specially insoluble drugs. The contact angle of insoluble drugs was measured by the penetration rate into powder bed using Washburn equation and wicking method. From the measured contact angle data, the surface free energy value of pharmaceutical powders ${\gamma}$s was divided and analysized into the polar component, ${\gamma}$s$\^$p/ and the dispersion component, ${\gamma}$s$\^$d/. Furthermore, the data was interpreted for acid part, ${\gamma}$s$\^$+/ and base part, ${\gamma}$s$\^$$\square$/ of surface free energy. (omitted)

  • PDF

Computational Analysis of Heat and Mass Transfer in a Planar-type Solid Oxide Fuel Cell (저온 평판형 고체산화물 연료전지 내부 열 및 물질전달 현상에 대한 전산해석)

  • Jeong, Hee-Seok;Cha, Hoon;Sohn, Jeong-Lak;Ro, Sung-Tack
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.648-654
    • /
    • 2005
  • The performance prediction of a planar-type solid oxide fuel ceil is conducted by a computational analysis. The transport processes are formulated with the help of a simplified treatment of heat generation by the electrochemical reaction. From the result of the computational analysis, it is shown that the electrochemical reaction is closely related to the transport phenomena inside a solid oxide fuel cell. Transport phenomena including heat and mass transfer have influence on the distribution of local current density and as a result, on the performance characteristics of the fuel cell. Computational analysis is also extended to the parametric study to investigate the performance behavior of the fuel cell with different amount of supplied fuel flow rates. It is also demonstrated that the mathematical formulation and computational procedures proposed in this study can be applied to prove the importance of the specific TPB(Three-Phase-Boundary) area in the manufacturing process of electrodes in a solid oxide fuel cell.

  • PDF

Computational Analysis of Transport Phenomena in a Planar-Type Solid Oxide Fuel Cell with a Simplified Treatment of the Electrochemical Heat Generation (전기화학 반응에 의한 생성 열의 단순화된 처리 기법을 이용한 평판형 고체산화물 연료전지 내부의 이동현상에 대한 전산 해석)

  • Cha, Hoon;Sohn, Jeong-Lak;Ro, Sung-Tack
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.12 s.283
    • /
    • pp.846-853
    • /
    • 2005
  • For the performance prediction of a planar-type solid oxide fuel cell, the computational analysis of transport phenomena with a simplified treatment of heat generation by the electrochemical reaction is conducted. From the result of the computational analysis, it is shown that the electrochemical reaction is closely related to the transport phenomena inside a solid oxide fuel cell. Transport phenomena including heat and mass transfer influences on the distribution of local current density and, as a result, on the performance characteristics of the fuel cell. Computational analysis is also extended to the parametric study to investigate the performance behavior of the fuel cell with different amount of supplied fuel flow rates. It is also demonstrated that the mathematical formulation and computational procedures proposed in this study can be applied to prove the importance of the specific TPB area in the manufacturing process of electrodes in solid oxide fuel cells.

Tribological Properties of Semi-metallic Brake Friction Materials Containing Different Solid Lubricants: Graphite, $WS_2$, and $MoS_2$ (고체 윤활제의 특성에 따른 반금속계 마찰재의 마찰 마모특성에 관한 연구)

  • Jang, Ho;Shin, Min-Wook;Kim, Yun-Cheol;Chung, Dong-Yoon
    • Tribology and Lubricants
    • /
    • v.25 no.1
    • /
    • pp.61-65
    • /
    • 2009
  • Tribological properties of the semi-metallic friction materials containing different solid lubricants (graphite, $WS_2$, $MoS_2$) were investigated. The friction materials were fabricated with an experimental formulation and tested with gray cast iron disks. Results showed that graphite contributed to stabilize the friction coefficient during run-in processes. Also, graphite provided better fade resistance than that of $WS_2$ and $MoS_2$. At intermediate temperature ranges, however, friction materials with $WS_2$ or $MoS_2$ maintained higher friction effectiveness than that of graphite. On the other hand, friction materials containing $MoS_2$ showed increased wear rates than that with graphite or $WS_2$. Friction materials with proper combinations of two solid lubricants showed better friction and wear properties than that of the friction materials containing single solid lubricant.

Dissolution Profiles of Solid Dispersions Containing Poorly Water-Soluble Drugs and Solubilizing Compositions (가용화 조성물과 난용성 약물군을 함유하는 고체분산체의 용출양상)

  • Kim, Tae-Wan;Choi, Choon-Young;Cao, Qing-Ri;Kwon, Kyoung-Ae;Lee, Beom-Jin
    • Journal of Pharmaceutical Investigation
    • /
    • v.32 no.3
    • /
    • pp.191-197
    • /
    • 2002
  • Polymer based physical mixtures or solid dispersions containing solubilizing compositions[OA, tween80 and SLS] were prepared using a spray-dryer. Lovastatin(LOS), simvastatin(SIMS), aceclofenac(AFC) and cisapride(CSP) were selected as poorly water-soluble drugs. Dextrin, poly(vinylalcohol) (PVA), poly(vinylpyrrolidone)(PVP) and polyethylene glycol(PEG) were chosen as solubilizing carriers for solid dispersions. The solid dispersions containing solubilizing compositions without drug were prepared without using organic solvents or tedious changes of formulation compositions. This system could be used to quickly screen the dissolution profiles of poorly water-soluble drugs by simply mixing with drugs thereafter. In case of solid dispersion containing drug, organic solvent systems could be used to solubilize model drugs. The dissolution rates of the drugs were higher when mixed with drug and solid dispersions containing solubilizing compositions. However, solid dispersions of LOS, AFC, and CSP simultaneously containing drug and solubilizing compositions in organic solvent systems were more useful than physical mixtures of drug and solid dispersions without drug except SIMS. Based on solubilizing capability of polymer based physical mixtures in gelatin hard capsules, optimal solid dispersion system of poorly water-soluble drugs could be formulated. However, it should be noted that dissolution rate of poorly water-soluble drugs were highly dependent on drug properties, solubilizing compositions and polymeric carriers.

Finite element analysis of elastic solid/Stokes flow interaction problem

  • Myung, Jin-Suk;Hwang, Wook-Ryol;Won, Ho-Youn;Ahn, Kyung-Hyun;Lee, Seung-Jong
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.4
    • /
    • pp.233-242
    • /
    • 2007
  • We performed a numerical investigation to find out the optimal choice of the spatial discretization in the distributed-Lagrangian-multiplier/fictitious-domain (DLM/FD) method for the solid/fluid interaction problem. The elastic solid bar attached on the bottom in a pressure-driven channel flow of a Newtonian fluid was selected as a model problem. Our formulation is based on the scheme of Yu (2005) for the interaction between flexible bodies and fluid. A fixed regular rectangular discretization was applied for the description of solid and fluid domain by using the fictitious domain concept. The hydrodynamic interaction between solid and fluid was treated implicitly by the distributed Lagrangian multiplier method. Considering a simplified problem of the Stokes flow and the linearized elasticity, two numerical factors were investigated to clarify their effects and to find the optimum condition: the distribution of Lagrangian multipliers and the solid/fluid interfacial condition. The robustness of this method was verified through the mesh convergence and a pseudo-time step test. We found that the fluid stress in a fictitious solid domain can be neglected and that the Lagrangian multipliers are better to be applied on the entire solid domain. These results will be used to extend our study to systems of elastic particle in the Stokes flow, and of particles in the viscoelastic fluid.