• Title/Summary/Keyword: Solar-powered

Search Result 161, Processing Time 0.025 seconds

Efficient Path Planning for Long Term Solar UAV Flight (태양광 에너지 무인항공기의 장기체공을 위한 경로 탐색)

  • Ryu, Hanseok;Byun, Heejae;Park, Sanghyuk
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.4
    • /
    • pp.32-38
    • /
    • 2014
  • Sufficient energy charging during a day is essential for a solar-powered long-endurance aircraft. Variations of flight path that is superior to a basic circle path are sought in this study for more efficient charging. Flight path associated with roll and pitch attitudes are investigated. It seems that the pitch angle can play more important role than the roll angle for the solar charging efficiency. Thus, more energy charging is observed when the entire flight path is tilted toward the direction of the sun.

Revenue Maximizing Scheduling for a Fast Electric Vehicle Charging Station with Solar PV and ESS

  • Leon, Nishimwe H.;Yoon, Sung-Guk
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.3
    • /
    • pp.315-319
    • /
    • 2020
  • The modern transportation and mobility sector is expected to encounter high penetration of Electric Vehicles (EVs) because EVs contribute to reducing the harmful emissions from fossil fuel-powered vehicles. With the prospective growth of EVs, sufficient and convenient facilities for fast charging are crucial toward satisfying the EVs' quick charging demand during their trip. Therefore, the Fast Electric Vehicle Charging Stations (FECS) will be a similar role to gas stations. In this paper, we study a charging scheduling problem for the FECS with solar photovoltaic (PV) and an Energy Storage System (ESS). We formulate an optimization problem that minimizes the operational costs of FECS. There are two cost and one revenue terms that are buying cost from main grid power, ESS degradation cost, and revenue from the charging fee of the EVs. Simulation results show that the proposed scheduling algorithm reduces the daily operational cost by effectively using solar PV and ESS.

Study on the Cooling System by Solar- powered Absorption- Type Chiller (태양열이용 흡수식냉동기에 의한 냉방장치 연구)

  • Kim, Hyo-Kyung;Kim, Moo-Geun;Jung, Si-Young
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.12 no.3
    • /
    • pp.147-158
    • /
    • 1983
  • This study aims at experimental investigation on the feasibility of solar cooling in the seoul area. The system is comprised of fiat plate collectors, storage tank, auxiliary heater and Li-Br absorption chiller. Characteristics of the chi lier and the solar contribution on cooling were obtained by experiment The results show that during the days of experiment('83.6.10-6.22, 8.17-8.19) space cooling could be achieved by using soiar energy and auxiliary heater Moreover, there were time intervals during the day when cooling was possible using solar energy only without the auxiliary heater.

  • PDF

Development of the sustainable solar cell powered LTE based IoT fine dust detecting terminal (태양전지를 이용한 지속 가능형 LTE 기반 IoT 미세먼지 측정 단말기 개발)

  • Kim, Howoon;Woo, Dong Sik
    • Journal of IKEEE
    • /
    • v.25 no.1
    • /
    • pp.109-115
    • /
    • 2021
  • In this paper, the fine dust detecting terminal which can transmit data in real time was developed. The terminal used a wide spreading LTE network and was powered by solarcell and battery for easy installation and independent operation, because it did not need the wired power grid or wired communication network. The data showed the possibility of forecasting fine dust changes by analyzing with the data from public meteorologic data. The developed terminal will be helpful for predicting and analyse fine dust's more precise flow and effect on environment with an easy installation on any places.

Performance Evaluation of Backwash Hydrodynamic Separator Filter for Treatment of Micro Particles (역세척 Hydrodynamic Separator Filter를 이용한 미세입자 제거 특성 분석)

  • Lee, Jun-Ho;Bang, Ki-Woong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.10
    • /
    • pp.694-701
    • /
    • 2012
  • The main purpose of this study is to evaluate of backwash system of hydrodynamic separator filter (HSF) with solar powered submerged pumps. It consists of a photovoltaic solar array, control electronics, battery, and two submersible pump powered by a 12 voltage DC motor. The laboratory scale study on treatable potential of micro particles using backwash HSF that was a combined with perlite filter cartridge and backwash nozzles. Since it was not easy to use actual storm water in the scaled-down hydraulic model investigations, it was necessary to reproduce ranges of particle sizes with synthetic materials. The synthesized storm runoff was made with water and addition of particles; ion exchange resin partices, silica gel particles, and commercial area manhole sediment particles. HSF was made of acryl resin with 250 mm of diameter filter chamber and overall height of 800 mm. Four case test were performed with different backwashing conditions and determined the SS removal efficiency with various surface loading rates. The operated range of surface loading rate was about 308~$1,250m^3/m^2/day$. It was found that SS removal efficiency of HSF using two submersible pumps improved by about 18% compared with HSF without backwash. Nonpoint control devices with solar water pumping systems would be useful for backwashing the filter in areas with not suppling electricity and reduce filter media exchange cost.

Solar-CTP : An Enhanced CTP for Solar-powered Wireless Sensor Networks (Solar-CTP : 태양 에너지 수집형 무선 센서 네트워크를 위한 향상된 CTP)

  • Cheong, Seok Hyun;Kang, Minjae;Go, Jung Hyun;Noh, Dong Kun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.10a
    • /
    • pp.329-330
    • /
    • 2019
  • 무선 센서 네트워크(WSN)는 배터리 자원의 제약으로 인해 수명이 짧다는 문제와 많은 이웃 노드와 통신하는 노드의 에너지 소비가 증가하는 에너지 불균형 문제를 가지고 있다. 이를 해결하고자, 최근에는 태양 에너지 수집형 노드를 사용하여 에너지를 지속적으로 수집함으로써 배터리 자원 제약 문제를 해결하려는 연구들이 활발히 진행되고 있다. 기존의 배터리 기반의 WSN을 위하여 제안된 유명한 데이터 수집 기법인 CTP(Collection Tree Protocol)도 이와 같은 에너지 제약 및 에너지 사용 불균형 문제는 고려하지 않고 설계되었다. 따라서 정전 노드 발생 및 루프 발생과 같은 네트워크의 안정성이 심각하게 저하되는 문제를 내포하고 있었다. 이를 해결하고자, 본 논문에서는 태양 에너지 수집형 노드로 구성된 WSN을 위한 향상된 CTP 기법(Solar-CTP)을 제안한다. 제안된 Solar-CTP기법에서는 수집 에너지 및 사용 에너지양 예측을 통해 노드 동작 모드를 결정한다. 성능 검증을 통해 기존 CTP에 비해 Solar-CTP의 정전 노드의 수가 매우 적고, 싱크의 데이터 수집량이 많아진 것을 확인하였다.

Design and Evaluation of Dye-Sensitized Solar Cell Submodule for Self-Powered Smart Liquid Crystal Window (자가발전 스마트 액정 윈도우를 위한 염료감응 태양전지 서브 모듈 설계 및 평가)

  • Byeong-Yun Oh
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.5
    • /
    • pp.494-499
    • /
    • 2024
  • The possibility of a dye-sensitized solar cell (DSSC) submodule was evaluated as an independent power source that can drive a smart liquid crystal window (SLW) that selectively blocks sunlight when electricity is applied. In order to save energy and increase the functionality of buildings, SLW operation was supplied directly from DSSC submodule, rather than connecting to the existing power system and external power sources. It was confirmed that the SLW can control light transmittance through self-generation using the DSSC submodule composed of 6 cells at low light of 2,500 lux. These results imply that there is a high possibility of combining smart windows and DSSCs suitable for window-type building-integrated photovoltaic (BIPV) systems. DSSCs, which can self-generate power in low light, are expected to increase their usability in urban BIPV systems through combination with smart window technology.

Fault Diagnosis of Transformer Based on Self-powered RFID Sensor Tag and Improved HHT

  • Wang, Tao;He, Yigang;Li, Bing;Shi, Tiancheng
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.2134-2143
    • /
    • 2018
  • This work introduces a fault diagnosis method for transformer based on self-powered radio frequency identification (RFID) sensor tag and improved Hilbert-Huang transform (HHT). Consisted by RFID tag chip, power management circuit, MCU and accelerometer, the developed RFID sensor tag is used to acquire and wirelessly transmit the vibration signal. A customized power management including solar panel, low dropout (LDO) voltage regulator, supercapacitor and corresponding charging circuit is presented to guarantee constant DC power for the sensor tag. An improved band restricted empirical mode decomposition (BREMD) which is optimized by quantum-behaved particle swarm optimization (QPSO) algorithm is proposed to deal with the raw vibration signal. Compared with traditional methods, this improved BREMD method shows great superiority in reducing mode aliasing. Then, a promising fault diagnosis approach on the basis of Hilbert marginal spectrum variations is brought up. The measured results show that the presented power management circuit can generate 2.5V DC voltage for the rest of the sensor tag. The developed sensor tag can achieve a reliable communication distance of 17.8m in the test environment. Furthermore, the measurement results indicate the promising performance of fault diagnosis for transformer.

Utilization of Active Diodes in Self-powered Sensorless Three-phase Boost-rectifiers for Energy Harvesting Applications

  • Tapia-Hernandez, Alejandro;Ponce-Silva, Mario;Olivares-Peregrino, Victor Hugo;Valdez-Resendiz, Jesus Elias;Hernandez-Gonzalez, Leobardo
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.1117-1126
    • /
    • 2017
  • The main contribution of this paper is the use of sensorless active diodes to generate the gate signals for a three-phase boost-rectifier with a self-powered control scheme. The sensorless operation is achieved making use of the gate control signals generated by the active diode schemes on each of the switching devices using a pulse width half-controlled boost rectifier modulation technique (PWM-HCBR). The proposed scheme synchronizes the gate control signals with a three phase voltage supply. Autonomous operation is obtained making use of the output DC bus to feed the control circuitry, the active diodes and the driver circuitry. The three-phase boost-rectifier is supplied by a three-phase permanent magnet electric generator powered by a solar concentrator dish with variable voltage and variable frequency conditions. Experimental results report an efficiency of up to 94.6% for 25 W and an input of 3.6 V peak per phase with 450.