• Title/Summary/Keyword: Solar-electric Vehicle

Search Result 48, Processing Time 0.027 seconds

Empennage Design of Solar-Electric Powered High Altitude Long Endurance Unmanned Aerial Vehicle (고고도 장기체공 전기 동력 무인기의 꼬리 날개 설계)

  • Hwang, Seung-Jae;Lee, Yung-Gyo;Kim, Cheol-Wan;Ahn, Seok-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.9
    • /
    • pp.708-713
    • /
    • 2013
  • KARI is developing a solar-electric powered HALE UAV(EAV-3). For demonstrating the technology, EAV-2H, a down-scaled version of EAV-3, is developed and after EAV-2H's initial flight test, the directional stability and control need to be improved. Thus, the vertical tail and rudder of EAV-2H are redesigned with Advanced Aircraft Analysis(AAA). Size of the rudder is increased from mean chord ratio of rudder to vertical tail, $C_r/C_v(%)=30$ to $C_r/C_v(%)=60$ and size of the vertical tail is reduced 15%. As a result, the directional control to side wind($v_1$) is improved to sideslip angle, ${\beta}(deg)=25^{\circ}$ and $v_1(m/sec)=3.54$. Also, variation of airplane side force coefficient with sideslip angle ($C_{y_{\beta}}$) and variation of airplane side force coefficient with dimensionless rate of change of yaw rate ($C_{y_r}$) are reduced 15% and 22%, respectively to minimize the effect of side wind. The empennage design of EAV-2H is verified with flight tests and applied to design of KARI's solar-electric-powered EAV-3.

Smart Electric Mobility Operating System Integrated with Off-Grid Solar Power Plants in Tanzania: Vision and Trial Run (탄자니아의 태양광 발전소와 통합된 전기 모빌리티 운영 시스템 : 비전과 시범운행)

  • Rhee, Hyop-Seung;Im, Hyuck-Soon;Manongi, Frank Andrew;Shin, Young-In;Song, Ho-Won;Jung, Woo-Kyun;Ahn, Sung-Hoon
    • Journal of Appropriate Technology
    • /
    • v.7 no.2
    • /
    • pp.127-135
    • /
    • 2021
  • To respond to the threat of global warming, countries around the world are promoting the spread of renewable energy and reduction of carbon emissions. In accordance with the United Nation's Sustainable Development Goal to combat climate change and its impacts, global automakers are pushing for a full transition to electric vehicles within the next 10 years. Electric vehicles can be a useful means for reducing carbon emissions, but in order to reduce carbon generated in the stage of producing electricity for charging, a power generation system using eco-friendly renewable energy is required. In this study, we propose a smart electric mobility operating system integrated with off-grid solar power plants established in Tanzania, Africa. By applying smart monitoring and communication functions based on Arduino-based computing devices, information such as remaining battery capacity, battery status, location, speed, altitude, and road conditions of an electric vehicle or electric motorcycle is monitored. In addition, we present a scenario that communicates with the surrounding independent solar power plant infrastructure to predict the drivable distance and optimize the charging schedule and route to the destination. The feasibility of the proposed system was verified through test runs of electric motorcycles. In considering local environmental characteristics in Tanzania for the operation of the electric mobility system, factors such as eco-friendliness, economic feasibility, ease of operation, and compatibility should be weighed. The smart electric mobility operating system proposed in this study can be an important basis for implementing the SDGs' climate change response.

A Study for Examples of Fire including with Combustible Substance and electrical overload in Automotive Inside Room (자동차 실내 인화성물질과 전기과부하에 의한 화재관련 사례 연구)

  • Han, Jae Oh;Ham, Sung Hoon;Lim, Ha Young;Lee, Il Kwon
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.3
    • /
    • pp.38-43
    • /
    • 2014
  • This paper is to analyze and study the failure examples of fire by inflammables and electric contact faulty in interior of vehicle. The first example, the driver used to air freshener that remove the air conditioner bad smell. He get out of a car. And then, he put it on the crash pad. Before long, a fire breaks out because of explosion solar radiation. The second example, the driver used in room of a car. It certified the fire by disconnection phenomenon happened the electric overload. The third example, the driver install the heat rays to warm his body, In the initial stages, it didn't seek the dangerous of fire during using a car to 5,000km. This heat rays become to down durability so that produced the electric overload in an instant. The fourth example, after the man smoked the cigarette on riding with rear seat, he put it on seat in vehicle no extinguishing the burning cigarette. It knew the fact that burnt to ashes a car by on well combustible paper. Thus, the driver must consider a countermeasure for minimize the fire production when he use the inflammable and install adding electric system.

Rechargeable Zn-air Energy Storage Cells Providing High Power Density (고출력.고에너지 밀도의 아연금속-공기전지)

  • Park, Dong-Won;Kim, Jin Won;Lee, Jae Kwang;Lee, Jaeyoung
    • Applied Chemistry for Engineering
    • /
    • v.23 no.4
    • /
    • pp.359-366
    • /
    • 2012
  • Zn-Air energy storage cell is an attractive type of batteries due to its theoretical gravimetric energy density, cost-effective structure and environmental-friendly characteristics. The chargeability is the most critical in various industrial applications such as smart portable device, electric vehicle, and power storage system. Thus, it is necessary to reduce large overpotential of oxygen reduction/evolution reaction, the irreversibility of Zn anode, and carbonation in alkaline electrolyte. In this review, we try to introduce recent studies and developments of bi-functional air cathode, enhanced charge efficiency via modification of Zn anode structure, and blocking side reactions applying hybrid organic-aqueous electrolyte for high power density rechargeable Zn-Air energy storage cells.

Recent Research Trend of Zinc-ion Secondary Battery Materials for Next Generation Batterie (차세대 이차전지용 아연 이온 이차전지 소재 연구 개발 동향)

  • Jo, Jeonggeun;Kim, Jaekook
    • Ceramist
    • /
    • v.21 no.4
    • /
    • pp.312-330
    • /
    • 2018
  • Energy storage/conversion has become crucial not only to meet the present energy demand but also more importantly to sustain the modern society. Particularly, electrical energy storage is critical not only to support electronic, vehicular and load-levelling applications but also to efficiently commercialize renewable energy resources such as solar and wind. While Li-ion batteries are being intensely researched for electric vehicle applications, there is a pressing need to seek for new battery chemistries aimed at stationary storage systems. In this aspect, Zn-ion batteries offer a viable option to be utilized for high energy and power density applications since every intercalated Zn-ion yields a concurrent charge transfer of two electrons and thereby high theoretical capacities can be realized. Furthermore, the simplicity of fabrication under open-air conditions combined with the abundant and less toxic zinc element makes aqueous Zn-ion batteries one of the most economical, safe and green energy storage technologies with prospective use for stationary grid storage applications. Also, Zn-ion batteries are very safe for next-generation technologies based on flexible, roll-up, wearable implantable devices the portable electronics market. Following this advantages, a wide range of approaches and materials, namely, cathodes, anodes and electrolytes have been investigated for Zn-ion batteries applications to date. Herein, we review the progresses and major advancements related to aqueous. Zn-ion batteries, facilitating energy storage/conversion via $Zn^{2+}$ (de)intercalation mechanism.

A study on the road Kill about the wild animals protective system for a prevent (로드킬 예방을 위한 야생동물보호 시스템에 관한 연구)

  • Jeong, Yang-Kwon;Choi, Jae-Ho;Choi, Seok-Won
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.6
    • /
    • pp.575-580
    • /
    • 2010
  • The research which sees the wild animals back with the system for the penetration prevention, when the wild animals approaches with the infrared ray sensor which composes a proposed system to use radiation department and the solar heat which occur and to make lead in the spiral which informs a guard to application of power department and back the edge where uses the battery of the application of power department which supplies all the member and the outside minute electric current to do in order to maximize a warning utterance or a luminous effect, an utterance department and the light for a prevention and about the system which restrains the wild animals is a thing. The proposed system which sees the express highway and the national road, with region degree establishes back the same wild animals appears and disappears frequently a day and night and between in circumference and goes without question appears and disappears the penetration of the wild animals which prevents and the animal the vehicle and prevents the damage which collides, joins in and driver and is the ecosystem of natural environment protects preserves.

A study on the Power Characteristics of Hybrid Power System by Active Power Management (능동전력제어에 의한 하이브리드 동력시스템의 출력특성 연구)

  • Lee, Bohwa;Park, Poomin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.9
    • /
    • pp.833-841
    • /
    • 2016
  • The 200 W electrically powered unmanned aerial vehicle, which is studied in this research, uses solar cells, a fuel cell and batteries as the main power source simultaneously. The output of each power source performs power control for each power source by the active power control method so that an adequate capacity of the battery could be maintained while limiting the maximum output of the fuel cell. The output variation for each power source under the active power control method was identified through an integrated ground test. In addition, the effect of limiting the maximum output of the fuel cell on the output variation of the entire system was experimentally identified, and it was confirmed that the adequate maximum output value of the fuel cell for preventing the overdischarge of six series-connected, small size batteries for fuel cell systems is 150 W.

Evaluation of Rededge-M Camera for Water Color Observation after Image Preprocessing (영상 전처리 수행을 통한 Rededge-M 카메라의 수색 관측에의 활용성 검토)

  • Kim, Wonkook;Roh, Sang-Hyun;Moon, Yongseon;Jung, Sunghun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.3
    • /
    • pp.167-175
    • /
    • 2019
  • Water color analysis allows non-destructive estimation of abundance of optically active water constituents in the water body. Recently, there have been increasing needs for light-weighted multispectral cameras that can be integrated with low altitude unmanned platforms such as drones, autonomous vehicles, and heli-kites, for the water color analysis by spectroradiometers. This study performs the preprocessing of the Micasense Rededge-M camera which recently receives a growing attention from the earth observation community for its handiness and applicability for local environment monitoring, and investigates the applicability of Rededge-M data for water color analysis. The Vignette correction and the band alignment were conducted for the radiometric image data from Rededge-M, and the sky, water, and solar radiation essential for the water color analysis, and the resultant remote sensing reflectance were validated with an independent hyperspectral instrument, TriOS RAMSES. The experiment shows that Rededge-M generally satisfies the basic performance criteria for water color analysis, although noticeable differences are observed in the blue (475 nm) and the near-infrared (840 nm) band compared with RAMSES.