• 제목/요약/키워드: Solar water heating system

검색결과 215건 처리시간 0.026초

태양열을 증발기 열원으로 사용($20{\sim}40^{\circ}C$범위)하며 LiSCN+LiBr 수용액을 사용하는 흡수식 2중효용 난방시스템의 열역학적 해석 (Thermodynamic Analysis of a Double-Effect Absorption Heating System Using Water-LiBr- LiSCN Solution As $20{\sim}40^{\circ}C$ Range Solar Evaporator Heating)

  • 원승호
    • 한국태양에너지학회 논문집
    • /
    • 제26권4호
    • /
    • pp.73-81
    • /
    • 2006
  • In this paper, with water-LiBr-LiSCN mixture which utilizes solar energy as mid temperature range evaporator heat source, a thermodynamic analysis was performed to provide design data for a double-effect absorption heating system. A comparative study of the water-LiBr-LiSCN mixture against the water-LiBr pair was conducted by a computer simulation. The computer simulation is based on mass, material and heat balance equations for each part of the system. Coefficients of performance and flow ratios for effects of different operating temperatures are investigated. It is found that the heating COP is higher for the water-LiBr-LiSCN mixture than for the water-LiBr pair, and FR is lower for the former.

사무소건물 태양열급탕시스템의 LCC 최적화 시뮬레이션 (Optimizing the Life Cycle Cost of a Solar Water Heating System in an Office Building Through Simulation)

  • 고명진;최두성;장재동;김용식
    • 설비공학논문집
    • /
    • 제22권12호
    • /
    • pp.859-866
    • /
    • 2010
  • This study examined the economics of a solar water heating system for an office building using life cycle cost (LCC) optimization simulations. The numerical simulations were conducted with TRNSYS and GenOpt employing the Hooke-Jeeves algorithm. The solar collector area, slope, mass flow rate per collector area and storage tank volume were selected as the main design parameters of the solar water heating system. The LCC optimization simulations of the system were carried out for cases where water temperature was $60^{\circ}C$ and $50^{\circ}C$. The results showed that for water temperature at $60^{\circ}C$ and $50^{\circ}C$ the collector area could be decreased by 17% and 28%, storage tank volume could be decreased by 49% and 54%, and mass flow rate per collector area increased by 5% and 9% respectively compared to a non-optimized system. The LCC of the system was reduced by 4% for $60^{\circ}C$ and 7% for $50^{\circ}C$. The initial installation cost of the system was reduced by 24% for $60^{\circ}C$ and 34% for $50^{\circ}C$. However, the operating cost of the system increased by 16% for $60^{\circ}C$ and 36% for $50^{\circ}C$ compared to a traditional solar water heating system.

지역난방 적용 태양열시스템의 장기 열성능 분석 (Analysis of Long-term Thermal Performance of Solar Thermal System Connected to District Heating System)

  • 백남춘;신우철
    • 한국태양에너지학회 논문집
    • /
    • 제27권4호
    • /
    • pp.167-173
    • /
    • 2007
  • This study analyzed by simulation using TRNSYS as well as by experiment on the solar district heating system installed for the first time for the district heating system in Bundang. Simulation analysis using TRNSYS focused on the thermal behavior and long-term thermal efficiency of solar system. Experiment carried out for the reliability of simulation system. This solar system where the circuits of two different collectors, flat plate and vacuum tube collector, are connected in series by a collector heat exchanger, and the collection characteristics of each circuit varies. Therefore, these differences must be considered for the system's control. This system uses variable flow rate control in order to obtain always setting temperature of hot water by solar system. Specifically, this is a system that heats returning district heating water (DHW) at approximately $60^{\circ}C$ using a solar collector without a storage tank, up to the setting temperature of approximately $85{\sim}95^{\circ}C$ To realize this, a flat plate collector and a vacuum tube collector are used as separate collector loops. The first heating is performed by a flat plate collector loop and the second by a vacuum tube collector loop. In a gross collector area basis, the mean system efficiency, for 4 years, of a flat plate collector is 33.4% and a vacuum tube collector is 41.2%. The yearly total collection energy is 2,342GJ and really collection energy per unit area ($m^2$) is 1.92GJ and 2.37GJ respectively for the flat plate vacuum tube collector. This result is very important on the share of each collector area in this type of solar district heating system.

태양열 난방시설 신뢰도 평가 에 관한 연구 (Analyses of Reliability for a Typical Solar Heating System)

  • 장광규;전문헌
    • 대한기계학회논문집
    • /
    • 제7권3호
    • /
    • pp.241-248
    • /
    • 1983
  • In the present work a time-dependent reliability model for a typical solar domestic hot water and heating system is developed using the method of Fault Tree Analysis and existing mathematical techniques. The reference system used in this analysis is a typical solar heating system. The system reliability structure has been identified with the aid of Fault Tree methods. In addition, a simulation of the solar system reliability has been performed employing the Monte Carlo method. In the computer simulation, failure rate data such as WASH-1400, MIL-HDBK-217B, and Green and Bourne are used as input data. These results show that the developed reliability model is capable of expressing the primary failure phenomena of the solar heating and domestic hot water system.

에틸렌글리콜 혼합액을 사용하고, 태양열을 보조열원으로 하는 이중효용 흡수식 시스템의 난방 특성해석 (Analysis of Thermodynamic Design Data for Heating of Double - Effect Solar Absorption System using LiBr - water and Ethylene Glycol Mixture)

  • 원승호
    • 한국태양에너지학회 논문집
    • /
    • 제22권4호
    • /
    • pp.51-61
    • /
    • 2002
  • Analysis of thermodynamic design data of double effect solar absorption heat pump system for heating has been done to find the property of Libr-water + ethylene Glycol mixture for working fluid by computer simulation. Derived thermodynamic design data. enthalpy based coefficient of performance and flow ratio for possible combinations of operating temperature for water - LiBr and Ethylene Glycol mixture (H2O: CHO ratio 10:1 by mole) by computer simulation. The obtained results, COP and mass flow ratio of the water-lithium bromide-ethylene glycol system, are compared with data for the water-Libr pair solution.

한국형 태양열 온수급탕 시스템의 대책과 제안 (Measures and Proposal for Korean Solar Water Heating System)

  • 김성수;홍희기
    • 설비공학논문집
    • /
    • 제20권9호
    • /
    • pp.631-636
    • /
    • 2008
  • Solar thermal systems are recently refocused by higher oil prices, but did not completely restore the people's confidence owing to the past bad systems. Several types of solar water heating systems were analyzed in characteristics and some proper systems were proposed under Korean climates and system scale. As a small system, natural circulation system should be installed only in a southern region of Korea, with a freeze protection valve instead of heating coil for freeze protection. In most area of Korea, the forced circulation type with a heat exchange coil inside a thermal storage tank or with a spiral-jacketed storage tank, proposed and verified by the authors, has a merit of stable performance and freeze protection.

태양열이용 Baffle형 축열탱크를 갖는 온수난방시스템의 열성능 해석 (Analysis of Thermal Performance of Solar Hot-Water and Heating System with Baffle Storage Tank)

  • 서정세;이중섭
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.768-773
    • /
    • 2009
  • A numerical study has been performed to investigate the thermal Performance of Solar heating system with baffle type of storage tank by using the commercial code TRNSYS. As a result, the solar fraction depends strongly on the efficiency and heat loss coefficient of solar collector as well as the heating capacity of house and the water temperature supplied to the shower. In addition, the solar fraction has been basically ranked to higher level in baffle type of storage tank than typical type of single storage tank for the range of operation condition.

  • PDF

봄철 태양열 하이브리드 시스템의 성능특성 연구 (Study on the Performance Characteristics of Hybrid Solar Heating System during Spring Season)

  • 표종현;김원석;조홍현;박차식
    • 설비공학논문집
    • /
    • 제22권5호
    • /
    • pp.296-303
    • /
    • 2010
  • An experimental study was carried out to investigate performance characteristics of the hybrid solar system during spring season. The system operating condition, each load, and heat pump performance were analyzed with the cloud cover. As a results, the collector heat, solar fraction, and hot water load were decreased with a rise of the cloud. The heating load was considerably effected by the ambient temperature regardless of the cloud cover. Besides, the temperature of hot water increased with the solar radiation. The COP of the heat pump was significantly influenced by the ambient temperature, that was 2.09~2.46 for gray day and 1.94~2.71 for fair day, respectively.

태양열 시설원예 난방시스템의 장기성능 특성 분석 연구 (Study on long-term Performance characteristics of various solar thermal system for heating protected horticulture system)

  • 이상남;강용혁
    • 한국태양에너지학회 논문집
    • /
    • 제26권3호
    • /
    • pp.1-8
    • /
    • 2006
  • The objective of this research is to study on the analysis of long-term performance characteristics of various solar thermal system for heating protected horticulture system for reducing heating cost, increasing the value of product by environment control, and developing advanced culture technology by deploying solar thermal system. Long term field test for the demonstration was carried out in horticulture complex in Jeju Island. Reliability and economic aspect of the system which was operated complementary with thermal storage and solar hot water generation were analyzed by investigating collector efficiency, operation performance, and control features. Optimum operating condition and its characteristics were closely investigated by changing the control condition based on the temperature difference which is the most important operating parameter. However, it is expected that, in high-insolation areas where large-scale ground storage is adaptable, solar system demonstrated in the research could be economically competitive and promisingly disseminate over various application areas.

복합형 태양열 가열기에서 열매체 단일운전에 따른 기기성능 평가 (Performance Estimation of Hybrid Solar Air-Water Heater on Single Working of Heating Medium)

  • 최휘웅;윤정인;손창효;최광환
    • 한국태양에너지학회 논문집
    • /
    • 제34권6호
    • /
    • pp.49-56
    • /
    • 2014
  • Research about hybrid solar air-water heater that can make heated air and hot water was conducted as a part of improving efficiency of solar thermal energy. At this experiment, ability of making heating air and hot water was investigated and compared with traditional solar air heater and flat plate solar collector for hot water when air or liquid was heated respectively. Comparing hybrid solar air-water heater that used in this experiment to other solar air heater studied already, it has a lower efficiency at same mass flow rate. Air channel structure, fin's shape and arrangement in the air channel result in these difference then the ability of air heating need to be improved with changing these thing. In case of making hot water, performance was shown as similar with traditional system although the air channels were established beneath absorbing plate. But the heat loss coefficient was shown higher value by installing of air channel. Also the performance of hot water making was shown lower value at same liquid mass flow rate with traditional flat plate solar collector for hot water. So the necessity of performance improvement at lower mass flow rate of each heating medium can be confirmed.