• 제목/요약/키워드: Solar wafer

검색결과 281건 처리시간 0.029초

태양전지 웨이퍼용 Wire Saw안정화를 위한 지지구조 개선 (Design of the Supporting Structure of a Wire Saw for the Solar Cell Wafer)

  • 이일환;노승훈;김동욱;박인규;길사근;김영조
    • 반도체디스플레이기술학회지
    • /
    • 제17권3호
    • /
    • pp.59-64
    • /
    • 2018
  • In recent years, the solar cell market has steadily grown with the demand for new energies. And wire sawing is one of the most critical processes in manufacturing solar cell wafer which is supposed to affect the breakage of wafers most during the process and afterwards. Generally, the defects of the wafers are generated from the structural vibrations of the machine. In the sawing process, the vibrations cause unnecessary normal stress on the cut surface of wafers, and eventually create the surface damage or leave the residual stress. In this study, the dynamic properties of a wire saw have been analyzed through the frequency response test and the computer simulation. And the effects of the design alterations have been investigated to stabilize the machine structure and further to reduce the vibrations. The result shows that relatively simple design alterations of supporting structure without any change of major parts of the machine can suppress the vibrations of the machine effectively.

HWCVD 계면 보호층을 적용한 실리콘 이종접합 태양전지 연구 (Silicon Heterojunction Solar Cell with HWCVD Passivation Layer)

  • 박상현;정대영;김찬석;송준용;조준식;이정철;최덕균;윤경훈;송진수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.346-346
    • /
    • 2009
  • For high efficiency hetero junction solar cell over 20%, good silicon wafer passivation is one of the most important technological factor. Compared to the conventional PECVD technique, HWCVD has appeared as an promising alternative for high quality passivation layer formation. In this work, HWCVD passivation layer characteristics have been intensively investigated on wafer surface treatment, Hydrogen density in deposited thin layer and thermal effects in deposition process. Comprehensive results of the individual process factors on interface passivation has been discussed and resultant silicon hetero junction solar cell characteristics has been investigated.

  • PDF

N타입 결정질 실리콘 웨이퍼 두께 및 알루미늄 페이스트 도포량 변화에 따른 Bowing 및 Al doped p+ layer 형성 분석 (Analysis on Bowing and Formation of Al Doped P+ Layer by Changes of Thickness of N-type Wafer and Amount of Al Paste)

  • 박태준;변종민;김영도
    • 한국재료학회지
    • /
    • 제25권1호
    • /
    • pp.16-20
    • /
    • 2015
  • In this study, in order to improve the efficiency of n-type monocrystalline solar cells with an Alu-cell structure, we investigate the effect of the amount of Al paste in thin n-type monocrystalline wafers with thicknesses of $120{\mu}m$, $130{\mu}m$, $140{\mu}m$. Formation of the Al doped $p^+$ layer and wafer bowing occurred from the formation process of the Al back electrode was analyzed. Changing the amount of Al paste increased the thickness of the Al doped $p^+$ layer, and sheet resistivity decreased; however, wafer bowing increased due to the thermal expansion coefficient between the Al paste and the c-Si wafer. With the application of $5.34mg/cm^2$ of Al paste, wafer bowing in a thickness of $140{\mu}m$ reached a maximum of 2.9 mm and wafer bowing in a thickness of $120{\mu}m$ reached a maximum of 4 mm. The study's results suggest that when considering uniformity and thickness of an Al doped $p^+$ layer, sheet resistivity, and wafer bowing, the appropriate amount of Al paste for formation of the Al back electrode is $4.72mg/cm^2$ in a wafer with a thickness of $120{\mu}m$.

중금속 오염이 n형 실리콘 태양전지의 전기적 특성에 미치는 영향에 대한 연구 (Influence of Metallic Contamination on Photovoltaic Characteristics of n-type Silicon Solar-cells)

  • 김일환;박준성;박재근
    • Current Photovoltaic Research
    • /
    • 제6권1호
    • /
    • pp.17-20
    • /
    • 2018
  • The dependency of the photovoltaic performance of p-/n-type silicon solar-cells on the metallic contaminant type (Fe, Cu, and Ni) and concentration was investigated. The minority-carrier recombination lifetime was degraded with increasing metallic contaminant concentration, however, the degradation sensitivity of recombination lifetime was lower at n-type than p-type silicon wafer, which means n-type silicon wafer have an immunity to the effect of metallic contamination. This is because heavy metal ions with positive charge have a much larger capture cross section of electron than hole, so that reaction with electrons occurs much more easily. The power conversion efficiency of n-type solar-cells was degraded by 9.73% when metallic impurities were introduced in the silicon bulk, which is lower degradation compared to p-type solar-cells (15.61% of efficiency degradation). Therefore, n-type silicon solar-cells have a potential to achieve high efficiency of the solar-cell in the future with a merit of immunity against metal contamination.

다양한 레이저 조건에 따른 컷팅셀 제작 및 특성 분석 (Fabrication and Chracteristics of Cutting Cell with Various Laser Conditions)

  • 박정은;김동식;최원석;장재준;임동건
    • 한국태양에너지학회 논문집
    • /
    • 제39권3호
    • /
    • pp.9-17
    • /
    • 2019
  • Laser cutting cell of solar cells can achieve high voltage and efficiency through more array than conventional 6 inch cell compared to same area. In this study, we fabricated c-Si cutting cell with various lasers and laser conditions such as power, speed, and number of times. In the case of picosecond laser, excellent surface characteristics were obtained due to small surface defects and low thermal damage at the output of 20W and the speed of 100 mm/s. However, it is not possible to fabricate a cutting cell having good characteristics due to nonuniform cutting inside the wafer when the processing for forming a cutting cell is not sufficiently performed. For nanosecond lasers, the best wafer characteristics were obtained for fabrication of excellent cutting cells at a frequency of 500 kHz and a laser speed of 100 mm/s. However, the nanosecond laser has not been processed sufficiently in the condition of a number of times. As a result, it was confirmed that the wafer thickness was cut by $63{\mu}m$ of the cell thickness of $170{\mu}m$ in the condition of five times of laser process. It was found that more than 30% of the wafer thickness had to be processed to fabricate the cutting cell. After cutting the 6-inch cell having the voltage of 0.65 V, we obtained the voltage of about 0.63 V.

박형 결정질 실리콘 태양전지에서의 휨현상 감소를 위한 알루미늄층 두께 조절 (Bow Reduction in Thin Crystalline Silicon Solar Cell with Control of Rear Aluminum Layer Thickness)

  • 백태현;홍지화;임기조;강기환;유권종;송희은
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.108-112
    • /
    • 2012
  • Crystalline silicon solar cell remains the major player in the photovoltaic marketplace with 90 % of the market, despite the development of a variety of thin film technologies. Silicon's excellent efficiency, stability, material abundance and low toxicity have helped to maintain its position of dominance. However, the cost of silicon photovoltaic remains a major barrier to reducing the cost of silicon photovoltaics. Using the crystalline silicon wafer with thinner thickness is the promising way for cost and material reduction in the solar cell production. However, the thinner thickness of silicon wafer is, the worse bow phenomenon is induced. The bow phenomenon is observed when two or more layers of materials of different temperature expansion coefficiencies are in contact, in this case silicon and aluminum. In this paper, the solar cells were fabricated with different thicknesses of Al layer in order to reduce the bow phenomenon. With lower paste applications, we observed that the bow could be reduced by up to 40% of the largest value with 130 micron thickness of the wafer even though the conversion efficiency decrease of 0.5 % occurred. Since the bowed wafers lead to unacceptable yield losses during the module construction, the reduction of bow is indispensable on thin crystalline silicon solar cell. In this work, we have studied on the counterbalance between the bow and conversion efficiency and also suggest the formation of enough back surface field (BSF) with thinner Al paste application.

  • PDF

Micro blaster를 이용한 태양전지용 재생웨이퍼의 표면 개선에 관한 연구 (A study on improving the surface morphology of recycled wafer forsolar cells using micro_blaster)

  • 이윤호;조준환;김상원;공대영;서창택;조찬섭;이종현
    • 센서학회지
    • /
    • 제19권4호
    • /
    • pp.291-296
    • /
    • 2010
  • Recently, recycling method of waste wafer has been an area of solar cell to cut costs. Micro_blasting is one of the promising candidates for recycling of waste wafer due to their extremely simple and cost-effective process. In this paper, we attempt to explore the effect of micro_blasting and DRE(damage removal etching) process for solar cell. The optimal process conditions of micro_blasting are as follows: $10{\mu}m$ sized $Al_2O_3$ powder, jetting pressure of 400 kPa, and scan_speed of 30 cm/s. And the particles formed on micro_blasted wafer were removed by DRE precess which was performed by using HNA(HF/$HNO_3$/$CH_3COOH$) and TMAH(tetramethyl ammonium hydroxide). Structural analysis was done using a-step and the XRD patterns.

Low-cost Contact formation of High-Efficiency Crystalline Silicon Solar Cells by Plating

  • 김동섭;이은주;김정;이수홍
    • 신재생에너지
    • /
    • 제1권1호
    • /
    • pp.37-43
    • /
    • 2005
  • High-efficiency silicon solar cells have potential applications on mobile electronics and electrical vehicles. The fabrication processes of the high efficiency cells necessitate com placated fabrication precesses and expensive materials. Ti/Pd/Ag metal contact has been used only for limited area In spite of good stability and low contact resistance because of Its expensive material cost and precesses. Screen printed contact formed by Ag paste causes a low fill factor and a high shading loss of commercial solar cells because of high contact resistance and a low aspect ratio. Low cost Ni/Cu metal contact has been formed by using a low cost electroless and electroplating. Nickel silicide formation at the interface enhances stability and reduces the contact resistance resulting In an energy conversion efficiency of $20.2\%\;on\;0.50{\Omega}cm$ FZ wafer. Tapered contact structure has been applied to large area solar cells with $6.7\times6.7cm^2$ in order to reduce power losses by the front contact The tapered front metal contact Is easily formed by the electroplating technique producing $45cm^2$ solar cells with an efficiency of $21.4\%$ on $21.4\%\;on\;2{\Omega}cm$ FZ wafer.

  • PDF

박형웨이퍼를 사용한 결정질 태양전지의 PC1D를 이용한 최적화

  • 임태규;정우원;이준신
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.38-38
    • /
    • 2009
  • Wafer thickness of crystalline silicon is an important factor which decides a price of solar cell. PC1D was used to fix a condition that is required to get a high efficiency in a crystalline silicon solar cell using thin wafer($150{\mu}m$). In this simulation, base resistivity and emitter doping concentration were used as variables. As a result of the simulation, $V_{oc}$=0.6338(V), $I_{sc}$=5.565(A), $P_{max}$=2.674(W), FF=0.76 and efficiency 17.516(%) were obtained when emitter doping concentration is $5{\times}10^{20}cm^{-3}$, depth factor is 0.04 and sheet resistance is $79.76{\Omega}/square$.

  • PDF

오존수를 이용한 태양전지용 웨이퍼의 세정에 관한 연구 (A Study on Solar Cell Wafer Cleaning using Ozonate Water)

  • 문세호;채상훈;손영수
    • 전자공학회논문지
    • /
    • 제50권11호
    • /
    • pp.43-49
    • /
    • 2013
  • 실리콘 태양전지 제조에 기판으로 사용되는 156 mm 실리콘 웨이퍼의 제작 공정에 적용하기 위한 오존수 세정 메커니즘에 대하여 연구하였다. 이를 위하여 생산 공정에 있어서 제품 불량 및 성능 저하를 유발하는 웨이퍼 표면 오염원을 분석하였으며, 이를 제거하기 위한 오존 세정공정에 대하여 실험하였다. 이 기술을 적용한 결과 미세입자는 94% 이상 제거 되었으며, 잔류 유기물도 45% 이상 더 제거되는 것으로 나타났다.