• 제목/요약/키워드: Solar tracking system

검색결과 381건 처리시간 0.023초

추적식 수상 태양광 발전 시스템 성능 분석 (The Efficiency Analysis of Tracking-Type Floating PV System)

  • 양연원;정선옥;신현우;이길송
    • Current Photovoltaic Research
    • /
    • 제1권2호
    • /
    • pp.122-125
    • /
    • 2013
  • The Floating Photovoltaic System was installed on the surface of water. There were some researches in this subject. But there was not many studies with experiment on a high waterproof Floating Photovoltaic modules. The aim of this study was to analyze the performance of the Floating Photovoltaic System. For this experiment, a high waterproof Floating Photovoltaic modules were designed and applied to the module capacity of 10 kW Tracking-Type structure. The experiment results indicated the performance of the daily production is 51.6 kW; the production capacity of Floating Photovoltaic System is expected to be 23% higher than that of the ground-mounted photovoltaic system.

LabVIEW 적용 태양추적장치 개발과 태양에너지이용의 활성화 (Development of a Solar Tracker using LabVIEW for the enhancement of Solar Energy Utilization)

  • 오승진;이윤준;김남진;오원종;;천원기
    • 한국태양에너지학회 논문집
    • /
    • 제30권3호
    • /
    • pp.98-107
    • /
    • 2010
  • This paper introduces step by step procedures for the design, fabrication and operation of a solar tracking system. The system presented in this study consists of motion controllers, motor drives, step-motors, feedback devices and other accessories to support its functional stability. CdS sensors are used to constantly generate feedback signals to the controller, which assures a high-precision solar tracking even under adverse conditions. It enables instant correction if the system goes off track by strong winds causing gear backlash. A parabolic dish concentrator is mounted on the tracking system whose diameter was 30cm. The solar position data, in terms of azimuth and elevation, sunrise and sunset times were compared with those of the Astronomical Applications Department of the U.S. Naval Observatory. The results presented here clearly demonstrate the high-accuracy of the present system in solar tracking, which are applicable to many existing solar systems.

그림자 영향을 고려한 새로운 태양광 추적시스템 제어 (Control of a Novel PV Tracking System Considering the Shadow Influence)

  • 박기태;최정식;정동화
    • 전기학회논문지
    • /
    • 제57권6호
    • /
    • pp.994-1002
    • /
    • 2008
  • In this paper a novel tracking system is described, regarding the influence of shadow between array, aimed at improving the efficiency of PV tracking system. Comparing with a building site versus capacity power, domestic solar powers have a limited siting. Therefore, each array interferes with the shadow of other arrays. The loss by influence of those shadow can be compensated for by means of control algorithm of the tracking device. The paper suggests a method controlling an altitude for length which is received the shadow influence of PV array. By using an azimuth of current solar position and the length between arrays, the controller of tracking device is able to calculate the length between actual arrays and make a comparison of the shadow length at a specific time with the length between arrays. When the shadow length is longer than the length between arrays, the controller of tracking device can adjust a position by compensating error altitude of the length between arrays at an altitude of current solar position. In the paper, we develop the control algorithm able to minimize the loss caused by the influence of shadow on the PV tracking system, and compared this with conventional output system. The controller has been tested in the laboratory with proposed algorithm and shows excellent performance.

태양추적장치를 위한 태양위치계산에서의 제언 (Comments on the Computation of Sun Position for Sun Tracking System)

  • 박영칠
    • 한국태양에너지학회 논문집
    • /
    • 제36권6호
    • /
    • pp.47-59
    • /
    • 2016
  • As the usage of sun tracking system in solar energy utilization facility increases, requirement of more accurate computation of sun position has also been increased. Accordingly, various algorithms to compute the sun position have been proposed in the literature and some of them insist that their algorithms guarantee less than 0.01 degree computational error. However, mostly, the true meaning of accuracy argued in their publication is not clearly explained. In addition to that, they do not clearly state under what condition the accuracy they proposed can be guaranteed. Such ambiguity may induce misunderstanding on the accuracy of the computed sun position and ultimately may make misguided notion on the actual sun tracking system's sun tracking accuracy. This work presents some comments related to the implementation of sun position computational algorithm for the sun tracking system. We first introduce the algorithms proposed in the literature. And then, from sun tracking system user's point of view, we explain the true meaning of accuracy of computed sun position. We also discuss how to select the proper algorithm for the actual implementation. We finally discuss how the input factors used in computation of sun position, like time, position etc, affect the computed sun position accuracy.

태양 고도각 및 방위각 제어의 정확도 향상을 위한 추적 알고리즘 개발 (Development of Tracking Algorithm to Improve Accuracy of Altitude and Azimuth)

  • 백정우;고재섭;최정식;장미금;강성준;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 춘계학술대회 논문집 에너지변화시스템부문
    • /
    • pp.219-221
    • /
    • 2009
  • This paper analyzes efficiency of photovoltaic(PV) tracking system using solar location algorithm(SLA). Solar location tracking system is needed for efficiently and intensively using PV system independent of environmental condition. PV tracking system of program method is presented a high tracking accuracy without the wrong operating in rapidly changed insolation by the clouds and atmospheric condition. Therefore, this paper analyzes efficiency of PV system using SLA for more correct position tracking of solar. Also, controlled altitude angle and azimuth angle by applied algorithm is compared with data of korea astronomy observatory. And this paper analyzes the tracking error and proves the validity of applied algorithm.

  • PDF

태양광 어레이의 출력 특성을 이용한 개선된 전역 최대전력 점 추종 기법 (Improved Global Maximum Power Point Tracking Technique Using Output Characteristics of Solar Array)

  • 유규현;이우철
    • 전력전자학회논문지
    • /
    • 제25권2호
    • /
    • pp.111-117
    • /
    • 2020
  • The photovoltaic module has the characteristic that the output power varies according to the amount of insolation. If partial shading occurs in an environment composed of an array, a number of local maximum power points (LMPPs) may be generated according to the shading state. Photovoltaic arrays require global maximum power point tracking due to variations in output characteristics caused by solar radiation and temperature. Conventional algorithms, such as P&O and Incond, do not follow the global maximum power point in a partial shaded solar array. In this study, we propose a technique to follow the global maximum power point by using the correlation of voltage, current, and power in solar arrays. The proposed control technique 2qw validated through simulation and experiments by constructing a 2-kW solar system.

특성화고의 태양광 추적 제어 시스템 개발 프로젝트법이 학습자의 과제 수행 능력에 미치는 효과 (The Effect on Task Performance Ability of Project Method to Develop Solar Tracking Control System in Specialized High School)

  • 한유진;김방희;김진수
    • 공학교육연구
    • /
    • 제17권1호
    • /
    • pp.3-11
    • /
    • 2014
  • The purpose of this study was to verity the effect of project method on the task performance ability in development of a solar-tracking-control-system of specialized high school. In order to carry out this study, 2 classes of technical high school in Jeonbuk are chosen as experimental and control groups. The experimental group was taught by project method and the control group was taught by traditional instruction. Project method was designed by 4 stages-selection of goal, planning, implementation and evaluation. According to these stages, experimental group's students carried out the project that developing solar tracking control system in solar generation. The results of this study are as follows; the project method was more effective than the traditional instruction in planning ability for task performance and implementation ability, subordinates of task performance ability. However, information gathering ability and evaluation ability on task performance, others in subordinates, it is not clear that the project method is more effective.

Development of Tracking Algorithm for Floating Photovoltaic System

  • So, Byung-Moon;Im, Ik-Tae
    • 반도체디스플레이기술학회지
    • /
    • 제18권1호
    • /
    • pp.53-58
    • /
    • 2019
  • Since floating facility with mooring system can be moved and rotated by wind or other environmental variables, the error in azimuthal angle must be compensated using a GPS receiver and geo-magnetic sensor. Accordingly, when an existing photovoltaic tracking algorithm is applied to a floating photovoltaic system, it is difficult to do the optimal solar tracking. In this paper, an effective azimuthal angle algorithm is develop for the photovoltaic tracking in floating condition. In order to verify the developed algorithm, the prototype of the floating photovoltaic system is manufactured and the developed algorithm is applied to the system. The algorithm shows a good tracking feasibility on the prototype.

태양광 발전 시스템의 효율증대를 위한 Genetic Algorithm을 적용한 MPPT Control (Genetic algorithm-based ultra-efficient MPP tracking in a solar power generation system)

  • 최대섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.1187-1188
    • /
    • 2006
  • This paper a new method which applies a genetic algorithm for determining which sectionalizing switch to operate in order to solve the distribution system loss minimization re-configuration problem. In addition, the proposed method introduces a ultra efficient MPP tracking in a solar power generation system.

  • PDF

퍼지 상태 공간 분할 기법을 이용한 지능형 태양광 추적시스템 설계 (Designed of Intelligent Solar Tracking System using Fuzzy State-Space Partitioning Method)

  • 김관형
    • 한국정보통신학회논문지
    • /
    • 제15권10호
    • /
    • pp.2072-2078
    • /
    • 2011
  • 태양광을 이용한 태양광 발전시스템은 태양을 정면으로 바라 볼 때 가장 큰 효율을 얻을 수 있다. 즉, 태양의 위치에 대한 집광판(PV; Photovoltic)의 법선벡터를 일치시켜야 가장 높은 효율을 얻게 된다. 본 논문에서는 시간의 변화에 따라 태양의 이동경로를 추적할 수 있도록 태양의 그림자를 판독할 수 있는 8개의 CdS 센서 모듈을 통하여 태양의 위치를 판독하여 태양의 위치를 추적할 수 있는 시스템을 제시하고자 한다. 태양광 추적시스템의 퍼지제어기(fuzzy controller)는 퍼지 입력공간에 대한 격자형 퍼지분할(grid-type fuzzy partition) 영역으로 분할한 후 퍼지규칙(fuzzy rule)을 수립하여 시스템을 제어하도록 설계하였다. 본 논문에서는 태양광 추적을 위한 간단한 모형의 2축 제어시스템을 구성하였으며, CdS 모듈의 좌표축과 집광판의 좌표축을 일치시키도록 구성하였다. 이러한 시스템은 고정된 장소 및 선박과 같은 이동하는 환경에 효과적으로 태양광을 추적할 수 있는 지능형 퍼지제어기의 적용가능 성을 제시하고자 한다.