• Title/Summary/Keyword: Solar tracking algorithm

Search Result 146, Processing Time 0.026 seconds

Comments on the Computation of Sun Position for Sun Tracking System (태양추적장치를 위한 태양위치계산에서의 제언)

  • Park, Young Chil
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.6
    • /
    • pp.47-59
    • /
    • 2016
  • As the usage of sun tracking system in solar energy utilization facility increases, requirement of more accurate computation of sun position has also been increased. Accordingly, various algorithms to compute the sun position have been proposed in the literature and some of them insist that their algorithms guarantee less than 0.01 degree computational error. However, mostly, the true meaning of accuracy argued in their publication is not clearly explained. In addition to that, they do not clearly state under what condition the accuracy they proposed can be guaranteed. Such ambiguity may induce misunderstanding on the accuracy of the computed sun position and ultimately may make misguided notion on the actual sun tracking system's sun tracking accuracy. This work presents some comments related to the implementation of sun position computational algorithm for the sun tracking system. We first introduce the algorithms proposed in the literature. And then, from sun tracking system user's point of view, we explain the true meaning of accuracy of computed sun position. We also discuss how to select the proper algorithm for the actual implementation. We finally discuss how the input factors used in computation of sun position, like time, position etc, affect the computed sun position accuracy.

Photovoltaic tracking system considered loss by shadow (음영에 의한 손실을 고려한 태양광 발전 추적 시스템)

  • Choi, Jung-Sik;Ko, Jae-Sub;Jung, Chul-Ho;Kim, Do-Yon;Jung, Byung-Jin;Chung, Dong-Hwa
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.135-141
    • /
    • 2008
  • In this paper a novel tracking system is described, regarding the influence of shadow between array, aimed at improving the efficiency of PV tracking system. Comparing with a building site versus capacity power, domestic solar powers have a limited siting. Therefore, each array interferes with the shadow of other arrays. The loss by influence of those shadow can be compensated for by means of control algorithm of the tracking device. The paper suggests a method controlling an altitude for length which is received the shadow influence of PV array. By using an azimuth of current solar position and the length between arrays, the controller of tracking device is able to calculate the length between actual arrays and make a comparison of the shadow length at a specific time with the length between arrays. When the shadow length is longer than the length between arrays, the controller of tracking device can adjust a position by compensating error altitude of the length between arrays at an altitude of current solar position. In the paper, we develop the control algorithm able to minimize the loss caused by the influence of shadow on the PV tracking system, and compared this with conventional output system. The controller has been tested in the laboratory with proposed algorithm and shows excellent performance

  • PDF

Analysis of Sun Tracking Performance of Various Types of Sun Tracking System used in Parabolic Dish Type Solar Thermal Power Plant (접시형 태양열 발전시스템에서 사용하는 여러 가지 형태의 태양추적시스템의 태양추적성능 분석)

  • Seo, Dong-Hyeok;Park, Young-Chil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.4
    • /
    • pp.388-396
    • /
    • 2011
  • Sun tracking system is the most important subsystem in parabolic dish type solar thermal power plant, since it determines the amount of thermal energy to be collected, thus affects the efficiency of solar thermal power plant most significantly. Various types of sun tracking systems are currently used. Among them, use of photo sensors to located the sun(which is called sensor type) and use of astronomical algorithm to compute the sun position(which is called program type) are two of the mostly used methods. Recently some uses CCD sensor, like CCD camera, which is called image processing type sun tracking system. This work is concerned with the analysis of sun tracking performance of various types of sun tracking systems currently used in the parabolic dish type solar thermal power plant. We first developed a sun tracking error measurement system. Then, we evaluate the performance of five different types of sun tracking systems, sensor type, program type, hybrid type(use of sensor and computed sun position simultaneously), tracking error compensated program type and image processing type. Experimentally obtained data shows that the tracking error compensated program type sun tracking system is very effective and could provide a good sun tracking performance. Also the data obtained shows that the performance of sensor type sun tracking system is being affected by the cloud significantly, while the performance of a program type sun tracking system is being affected by the sun tracking system's mechanical and installation errors very much. Finally image processing type sun tracking system can provide accurate sun tracking performance, but costs more and requires more computational time.

Humpback Whale Assisted Hybrid Maximum Power Point Tracking Algorithm for Partially Shaded Solar Photovoltaic Systems

  • Premkumar, Manoharan;Sumithira, Rameshkumar
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1805-1818
    • /
    • 2018
  • This paper proposes a novel hybrid maximum power point tracking (MPPT) algorithm combining a Whale Optimization Algorithm (WOA) and the conventional Perturb & Observation (P&O) to track/extract the highest amount of power from a solar photovoltaic (SPV) system working under partial shading conditions (PSCs). The proposed hybrid algorithm is based on a WOA which predicts the initial global peak (GP) and is followed by P&O in the final stage to achieve a quicker convergence to a GP. Thus, this hybrid algorithm overcomes the computational burden encountered in a standalone WOA, grey wolf optimization (GWO) and hybrid GWO reported in the literature. The conventional algorithm searches for the maximum power point (MPP) in the predicted region by the WOA. The proposed MPPT technique is modelled and simulated using MATLAB/Simulink for simulating an environment to check its effectiveness in accurately tracking the MPP during the GP region. This hybrid algorithm is compared with a standalone WOA, GWO and hybrid GWO. From the simulating results, it is shown that the proposed algorithm offers high tracking performance and that it increases the output power level of a SPV system under partial shading. The algorithm also verified experimentally on various PSCs.

Additional power conservation in 200W power plant with the application of high thermal profiled cooling liquid & improved deep learning based maximum power point tracking algorithm

  • Raj G. Chauhan;Saurabh K. Rajput;Himmat Singh
    • Advances in Energy Research
    • /
    • v.8 no.3
    • /
    • pp.185-202
    • /
    • 2022
  • This research work focuses to design and simulate a 200W solar power system with electrical power conservation scheme as well as thermal power conservation modeling to improve power extraction from solar power plant. Many researchers have been already designed and developed different methods to extract maximum power while there were very researches are available on improving solar power thermally and mechanically. Thermal parameters are also important while discussing about maximizing power extraction of any power plant. A specific type of coolant which have very high boiling point is proposed to be use at the bottom surface of solar panel to reduce the temperature of panel in summer. A comparison between different maximum power point tracking (MPPT) technique and proposed MPPT technique is performed. Using this proposed Thermo-electrical MPPT (TE-MPPT) with Deep Learning Algorithm model 40% power is conserved as compared to traditional solar power system models.

3-Dimensional Path Planning and Guidance for High Altitude Long Endurance UAV Including a Solar Power Model (태양광 전력모델을 포함한 장기체공 무인기의 3차원 경로계획 및 유도)

  • Oh, Su-hun;Kim, Kap-dong;Park, Jun-hyun
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.5
    • /
    • pp.401-407
    • /
    • 2016
  • This paper introduces 3-dimensional path planning and guidance including power model for high altitude long endurance (HALE) UAV using solar energy. Dubins curve used in this paper has advantage of being directly available to apply path planning. However, most of the path planning problems using Dubins curve are defined in a two-dimensional plan. So, we used 3-dimensional Dubins path generation algorithm which was studied by Randal W. Beard. The aircraft model which used in this paper does not have an aileron. So we designed lateral controller by using a rudder. And then, we were conducted path tracking simulations by using a nonlinear path tracking algorithm. We generate examples according to altitude conditions. From the path tracking simulation results, we confirm that the path tracking is well on the flight path. Finally, we were modeling the power system of HALE UAVs and conducting path tracking simulation during 48hours. Modeling the amount of power generated by the solar cell through the calculation of the solar energy yield. And, we show the 48hours path tracking simulation results.

Genetic algorithm-based ultra-efficient MPP tracking in a solar power generation system (유전자 알고리즘 기반 무결점 초고효율계통 연계형 인버터개발)

  • Choi, Dae-Seub;Song, Min-Jong;Kim, Young-Min
    • Proceedings of the KIEE Conference
    • /
    • 2006.10b
    • /
    • pp.212-215
    • /
    • 2006
  • This paper a new method which applies a genetic algorithm for determining which sectionalizing switch to operate in order to solve the distribution system loss minimization re-configuration problem. In addition, the proposed method introduces a ultra efficient MMP tracking in a solar power generation system.

  • PDF

Genetic algorithm-based ultra-efficient MPP tracking in a solar power generation system (유전자 알고리즘 기반 무결점 초고효율계통 연계형 인버터개발)

  • Choi, Dae-Seub;Song, Min-Jong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.394-395
    • /
    • 2006
  • This paper a new method which applies a genetic algorithm for determining which sectionalizing switch to poerate in order to solve the distribution system loss minimization re-configuration problem. In addition, the proposed method introduces a ultra efficient MMP tracking in a solar power generation system.

  • PDF

Genetic algorithm-based ultra-efficient MPP tracking in a solar power generation system (유전자 알고리즘 기반 무결점 초고효율계통 연계형 인버터개발)

  • Choi, Dae-Seub;Song, Min-Jong
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.75-77
    • /
    • 2006
  • This paper a new method which applies a genetic algorithm for determining which sectionalizing switch to poerate in order to solve the distribution system loss minimization re-configuration problem. In addition, the proposed method introduces a ultra efficient MMP tracking in a solar power generation system.

  • PDF

Genetic algorithm-based ultra-efficient MPP tracking in a solar power generation system (유전자 알고리즘 기반 무결점 초고효율계통 연계형 인버터개발)

  • Choi, Dae-Seub;Song, Min-Jong;Kim, Young-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.12a
    • /
    • pp.63-67
    • /
    • 2006
  • This paper a new method which applies a genetic algorithm for determining which sectionalizing switch to poerate in order to solve the distribution system loss minimization re-configuration problem. In addition, the proposed method introduces a ultra efficient MMP tracking in a solar power generation system.

  • PDF