• 제목/요약/키워드: Solar modules

검색결과 399건 처리시간 0.027초

공기압축 에너지저장방식의 추적식 태양광발전시스템 운전특성 (The Operating Characteristics of Tracking PV System Using Air Compress Energy Charging Method)

  • 박정민;김형석;백형래;조금배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 B
    • /
    • pp.1544-1546
    • /
    • 2004
  • This paper describes the element of solar cell's characteristics, photovoltaic system and solar tracking through experiment. Furthermore, it proposes the experiment results of the PV system is contained solar modules, power conditioning system and the solar tracking system using air compress charging energy The experimental results show that the PV system is always operated at maximum power of solar cells and tracking the sun in order to generate efficiently power generation and propose a capability of its application.

  • PDF

실리콘 태양전지 분장특성 분석연구 (The characteristics research of silicon solar cell spectrum response)

  • Choi, Seok-Joon;Yang, Seung-Yong;Hwang, Myung-Keun;Shin, Sang-Wuk;Lee, Se-Hyun;Rho, Jae-Yup;Lee, Jeong-Keun;Seo, Jeong-Jin
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2009년도 춘계학술대회 논문집
    • /
    • pp.388-391
    • /
    • 2009
  • In this paper, We observed spectral responsivity of general poly-cristalline silicon solar cell. This is very important to define solar cell's characteristics. So we tested two small modules that made of poly-cristalline silicon solar cells. We expect to the result of this experiment is useful for researching and measuring solar cell's characteristics.

  • PDF

선형 프레넬 반사판 태양열 발전시스템의 설계 및 제작 (Design and Manufacture of Linear Fresnel Reflector Solar Thermal System)

  • 김하늘;김종규
    • 융복합기술연구소 논문집
    • /
    • 제8권1호
    • /
    • pp.1-4
    • /
    • 2018
  • In this study, design and manufacture of LFR (Linerar Fresnel Reflector) system was performed for solar thermal absorption cooling. The LFR system was designed considering the expansion and convenience to be installed according to the cooling capacity of the applicable building. Twelve LFR modules with a total reflection area of $204m^2$ were installed. The automatic tracking system was applied to track the sun during the daytime.

고효율 및 고출력 태양광 모듈을 위한 셀 스트링 연구 (A Study on the Cell String for High Efficiency and High Power Photovoltaic Modules)

  • 박지수;황수현;오원제;이수호;정채환;이재형
    • 한국전기전자재료학회논문지
    • /
    • 제31권5호
    • /
    • pp.295-299
    • /
    • 2018
  • In this work, we conducted a study on cell strings of high efficiency and high power solar cell modules via simulation. In contrast to the conventional module manufacturing method, the simulation was performed by connecting cutting cells divided into four parts from 6-in size using the electrically conductive adhesive (ECA). The resistance of the ECA added in series connection was extracted using an experimental method. This resistance was found to be $3m{\Omega}$. Based on this simulation, we verified the change in efficiency of the string as a function of the number of cutting cell connections. Consequently, the cutting cell efficiency of the first 20.08% was significantly increased to 20.63% until the fifth connection; however, for further connections, it was confirmed that the efficiency was saturated to 20.8%. Connecting cutting cells using ECA improves the efficiency of the string; therefore, it is expected that it will be possible to fabricate modules with high efficiency and high power.

건물 적용 유형별 공기식 BIPVT 유닛의 전기 및 열성능 비교에 관한 연구 (A Study on the Performance Comparisons of Air Type BIPVT Collector Applied on Roofs and Facades)

  • 강준구;김진희;김준태
    • 한국태양에너지학회 논문집
    • /
    • 제30권5호
    • /
    • pp.56-62
    • /
    • 2010
  • The integration of PV modules into building facades or roof could raise their temperature that results in the reduction of PV system's electrical power generation. Hot air can be extracted from the space between PV modules and building envelope, and used for heating in buildings. PV/thermal collectors, or more generally known as PVT collectors, are devices that operate simultaneously to convert solar energy from the sun into two other useful energies, namely, electricity and heat. This paper compares the experimental performance of BIPVT((Building-Integrated Photovoltaic Thermal) collectors that applied on building roof and facade. There are four different cases: a roof-integrated PVT type and a facade-integrated PVT type, the base models with an air gap between the PV module and the surface, and the improved models for each types with aluminum fins attached to the PV modules. The accumulated thermal energy of the roof-integrated type was 15.8% higher than the facade-integrated regardless of fin attachment. The accumulated electrical energy of the roof-integrated type was 7.6% higher, compared to that of the facade-integrated. The efficiency differences among the collectors may be due to the fact that the pins absorbed heat from the PV module and emitted it to air layer.

염전 병행 태양광 발전의 실증과 시뮬레이션 (Salt Farm Parallel Solar Power System:Field tests and Simulations)

  • 박종성;김봉석;김근호;이승민;임철현
    • Current Photovoltaic Research
    • /
    • 제7권4호
    • /
    • pp.121-124
    • /
    • 2019
  • In this research, the concept of a salt farm parallel solar power system, which produce salt and electricity at the same site, is proposed for the first time in the world. The concept is that large waterproof plates made by interconnected solar modules are installed at the bottom of the salt farm. The pilot system was successfully installed at a sea shore, and verified its feasibility as a solar power plant. For deeper understanding, simulations for power prediction of the system were carried out and compared with the field test results. The power generation of the salt farm parallel system is comparable to conventional solar power plants. The cooling effect by sea water contributes more to the increase in the crystalline silicon photovoltaic module performance than the absorption loss due to sea water by maintaining certain height above the module.

결정질 실리콘 태양전지 모듈의 종류에 따른 동작 조건별 특성 비교에 관한 연구 (Output characteristics of different type of si pv modules based on working condition)

  • 박지홍;강기환;안형근;유권종;한득영
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 춘계학술발표대회 논문집
    • /
    • pp.252-256
    • /
    • 2008
  • Photovoltaic (PV) modules output changes noticeable with variations in temperature and irradiance. In general it is has been shown that a $1^{\circ}C$ increase in temperature results in a 0.5% drop in output. In this paper, seven PV module types are analyzed for variation in temperature and irradiance, and the resulting output characteristics examined. The 7 modules types utilized are as follows; 3 poly crystalline modules, 2 single crystalline modules, 1 back contact single crystalline module and 1 HIT module. 3 groups of experiments are then conducted on the modules; tests with varying irradiance values, tests with module temperature varying under $25^{\circ}C$ and tests with module temperature varying over $25^{\circ}C$. The experiments results show that as temperature rises the follow is observed; Pmax decreases by 0.6%, Voc decreases by about 0.4%, and Isc increasing by between 0.03%${\sim}$0.08%. In addition, an irradiance decrease of 100 w/m2 translates into a 10% drop in Pmax.

  • PDF

온도에 따른 PV모듈의 출력에 영향을 미치는 요소 분석 (Analysis of Factor on the Temperature Effect on the Output of PV Module)

  • 임종록;우성철;정태희;민용기;원창섭;안형근
    • 전기학회논문지
    • /
    • 제62권3호
    • /
    • pp.365-370
    • /
    • 2013
  • Generally, photovoltaic modules consist of glass, EVA, Solar Cell, back sheet and ribbon. But EVA, solar cell, ribbon affect electric output with temperature. EVA is a change in the transmittance of light from the sun. In addition, the solar cell output is decreased with temperature and the ribbon increases resistance. Transmittance and reflectance of glass and EVA were measured. In this paper, the characteristics of the components of PV module as EVA and Glass, ribbon were studied by variable temperature. effects on material properties investigated. As a result, glass is independent in temperature variation. EVA was the reduction 1~4% in transmittance. Solar cell decrease 0.469[%/$^{\circ}C$] in electric output by temperature variation. Other factors was controlled in solar cell..

R&D activities of a-Si:H thin film solar cells by LG Electronics

  • 이돈희
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2007년도 춘계학술발표회 초록집
    • /
    • pp.19-19
    • /
    • 2007
  • Recently, we have developed p-i-n hydrogenated amorphous silicon (a-Si:H) single junction (SJ) thin film solar cells with RF (13,56MHz) plasma enhanced chemical vapor deposition (PECVD) systems, and also successfully fabricated the mini-modules (>300$cm^2$), using laser scribing technique to form an integrated series connection, The efficiency of a mini-module was 7.4% (Area=305$cm^2$, $I_{SC}$=0.25A, $V_{OC}$=14.74V, FF=62%).

  • PDF

BIPV 시스템에서의 모듈 종류에 따른 건축적 특성 연구 - 채광형 시스템을 중심으로 - (A Study of the Architectural Characteristic Depending upon the Module in the BIPV System)

  • 이응직;이충식
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 춘계학술발표대회 논문집
    • /
    • pp.196-202
    • /
    • 2008
  • Effective climate protection is a most important tasks of our time. The BIPV is one of the most interesting and promisingly possibilities of an active use of solar energy at the building. In this study it was analyzed by the case study the function of the requirement of the BIPV-module as building material and this architectural characteristic according to the kind of the module. Therefore the goal of this study is to get securing the application information of BIPV as windowpane. BIPV modules are manufactured in the form of G/G. In the case of the crystal type the Transparent and the light Transmission is to be adjusted by the spacer attitude of the cell. Although this type could not be optimal for light effect of indoors because of the inequality of shade, the moving shade play makes a dramatic Roomimage by the run of sun. The application of this type would be for canopy, window or roof in the corridor or resounds. With amorphous the type it is to be manufactured simply largely laminar, and thus that will shorten building process. There is a relatively good economy to use and to the window system easily. After the production technology is easy the transparency of the modules to adjust, and the module shows to a high degree constant characteristics of light permeability and transparency. Without mottle of module shade is good the use for the window or roof glazing of office, library, classroom, etc. to adapt. The BIPV modules took generally speaking a function as building material to the daylight use, shading, isolation and also to the sight. That means that BIPV modules have as multifunctional system to sustainable architecture good successes and they are at the same time as Design element for architecture effectively.

  • PDF