• Title/Summary/Keyword: Solar light

Search Result 1,246, Processing Time 0.03 seconds

Effect of Sunlight Polarization on the Absorption Efficiency of V-shaped Organic Solar Cells

  • Kang, Kyungnam;Kim, Jungho
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.9-14
    • /
    • 2014
  • We numerically investigate the effect of sunlight polarization on the absorption efficiency of V-shaped organic solar cells (VOSCs) using the finite element method (FEM). The spectral distribution of absorbance and the spatial distribution of power dissipation are calculated as a function of the folding angle for s-and p-polarized light. The absorption enhancement caused by the light-trapping effect was more pronounced for s-polarized light at folding angles smaller than $20^{\circ}$, where s-polarized light has a relatively larger reflectance than p-polarized light. On the other hand, the absorption efficiency for p-polarized light is relatively larger for folding angles larger than $20^{\circ}$, where the smaller reflectance at the interface of the VOSC is more important in obtaining high absorption efficiency.

Analysis of Maximum Power Generation of Photovoltaic Module Depending on Constituent Materials and Incident Light Characteristics (구성 재료와 방사조도 특성에 따른 태양전지모듈의 최대출력 분석)

  • Kang, Gi-Hwan;Kim, Kyung-Soo;Park, Chi-Hong;Yu, Gwon-Jong;Ahn, Hyung-Keun;Han, Deuk-Young
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.1-6
    • /
    • 2007
  • In this study, we analyze the maximum power generation of photovoltaic(PV) module depending on constituent materials and incidence angle dependence of light. To verify characteristics of constituent materials, we made photovoltaic modules with 4 kinds of solar cells and textured glass according to fabrication method. To find the degree of the maximum power generation dependence on intensity of light, Solar Simulator is applied by changing angle of module and light intensity. Through this experiment, to obtain maximum power generation from limited PV modules, it is needed to fully understand constituent materials, fabrication method and dependence of incident light characteristics.

Characterization of Light Effect on Photovoltaic Property of Poly-Si Solar Cell by Using Photoconductive Atomic Force Microscopy (Photoconductive Atomic Force Microscopy를 이용한 빛의 세기 및 파장의 변화에 따른 폴리실리콘 태양전지의 광전특성 분석)

  • Heo, Jinhee
    • Korean Journal of Materials Research
    • /
    • v.28 no.11
    • /
    • pp.680-684
    • /
    • 2018
  • We investigate the effect of light intensity and wavelength of a solar cell device using photoconductive atomic force microscopy(PC-AFM). A $POCl_3$ diffusion doping process is used to produce a p-n junction solar cell device based on a polySi wafer, and the electrical properties of prepared solar cells are measured using a solar cell simulator system. The measured open circuit voltage($V_{oc}$) is 0.59 V and the short circuit current($I_{sc}$) is 48.5 mA. Moreover, the values of the fill factors and efficiencies of the devices are 0.7 and approximately 13.6 %, respectively. In addition, PC-AFM, a recent notable method for nano-scale characterization of photovoltaic elements, is used for direct measurements of photoelectric characteristics in limited areas instead of large areas. The effects of changes in the intensity and wavelength of light shining on the element on the photoelectric characteristics are observed. Results obtained through PC-AFM are compared with the electric/optical characteristics data obtained through a solar simulator. The voltage($V_{PC-AFM}$) at which the current is 0 A in the I-V characteristic curves increases sharply up to $18W/m^2$, peaking and slowly falling as light intensity increases. Here, $V_{PC-AFM}$ at $18W/m^2$ is 0.29 V, which corresponds to 59 % of the average $V_{oc}$ value, as measured with the solar simulator. Furthermore, while the light wavelength increases from 300 nm to 1,100 nm, the external quantum efficiency(EQE) and results from PC-AFM show similar trends at the macro scale but reveal different results in several sections, indicating the need for detailed analysis and improvement in the future.

A Study on the Manufacture of Single Axis Tracking Solar Power Generation System for BIPV (BIPV를 위한 단축 구동 태양광 전력 발생장치 제작에 관한 연구)

  • Cho, Jae-Cheol;Lee, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.335-338
    • /
    • 2012
  • Recently, the energy has been used much more than ever, but there has been many problems including atmospheric pollution. So we need alternative energy resources, which are solar heat, solar light, wind power, small water power, etc. The field, which is most popular these days, is the energy source by solar light which transform electric energy using the solar cell and it is available with many researches. In this paper, we manufactured the solar power generation system over 90W using solar module which was 9.90V for Voc, 0.93 A for Isc, 8.64 V for Vmp, 0.75 A for Imp, 6.5 W for power. System was controlled by step motor with worm gear to operate optimum condition between $0^{\circ}{\sim}70^{\circ}$ angle. This system was very effective in tracking space use because it need less space than general solar module.

Analysis of Total Radiation Components in Korea (국내 종합일사량의 성분분석)

  • Jo, Dok-Ki;Yun, Chang-Yeol;Kim, Kwang-Deuk;Kang, Young-Heak
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.67.1-67.1
    • /
    • 2011
  • Knowledge of the solar radiation components and classified wavelength are essential for modeling many solar energy systems. This is particularly the case for applications that concentrate the incident energy to attain high photo-dynamic efficiency achievable only at the higher intensities. In order to estimate the performance of concentrating solar systems, it is necessary to know the intensity of the beam radiation, as only this components can be concentrated, and The new solar system can generate electricity from ultraviolet and infrared light as well as visible light. The Korea Institute of Energy Research(KIER) has began collecting solar radiation components data since January, 1988, and solar radiation classified wavelength data since November, 2008. KIER's solar radiation components and classified wavelength data will be extensively used by concentrating solar system users or designers as well as by research institutes.

  • PDF

Development of High Performance Photoelectrode Paste Doped Glass Powder for Dye-sensitized Solar Cells (염료감응형 태양전지용 유리분말이 함유된 고효율 광전극 페이스트 개발)

  • Zhao, Xing Guan;Jin, En Mei;Gua, Hal-Bon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.5
    • /
    • pp.427-431
    • /
    • 2011
  • Hybrid $SiO_2-TiO_2$ photoelectrode with different type of layers was investigated in dye-sensitized solar cells (DSSC). Use of a thin layer of nanocrystalline $TiO_2$ would imply reduction in the amount of dye coverage, however, lower amount of dye in the thin films would imply fewer electron generation upon illumination. So, thus, it becomes necessary to include a $SiO_2-TiO_2$ layer for increase light harvesting effect such that the lower photon conversion due to thin layer could be compensated. In this paper reports the use of transparent high surface area $TiO_2$ layer and an additional $SiO_2-TiO_2$ layer, thus ensuring adequate light harvesting in these devices. The best solar conversion efficiency 6.6% under AM 1.5 was attained with a multi-layer structure using $TiO_2$ layer/$SiO_2-TiO_2$ layer/$TiO_2$ layer for the light harvesting and this had resulted to about 44% increase in photocurrent density of dye-sensitized solar cells.

Un-Cooled High Efficient Solar Lighting System and its Application (비냉각형 고효율 태양광 채광시스템 및 응용에 관한 연구)

  • Lee, Hoe-Youl;Kim, Myoung-Jin;Shin, Seo-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.11B
    • /
    • pp.1394-1402
    • /
    • 2011
  • This paper describes solar light collecting system which employs parabolic reflector and Fresnel lens and its industrial application. We have introduced second-stage optical system so that it makes optical fiber overcome its numerical aperture limitation and also it makes focused light become collimated, which results in decreased light energy density. As result of these, light collecting efficiency become maximized and the system does not require separate cooling apparatus any more. The developed solar lighting system together with artificial light source like LED has been applied to plant factory as a hybrid lighting source. This makes us save electric energy for artificial lighting during day time. The intensity of LED light in the hybrid lighting system is controlled automatically according to ambient-light-sensor installed in the system so that the light intensity for a plant always keeps the same level no matter how the sun light changes. For a plant factory whose size is 330 square meters, when solar lighting system is applied, 28,080KWh electric energy can be saved per month.2 times.

Developing the Light-weight PV Blind System and the Shading Analysis by the Control Conditions (경량 태양광발전 블라인드 개발 및 제어조건에 따른 음영분석)

  • Chung, Yu-Gun
    • KIEAE Journal
    • /
    • v.15 no.1
    • /
    • pp.83-88
    • /
    • 2015
  • This study aims to develope the light-weight PV blinds with windows and to investigate the shading analysis by the control conditions. For the study, the polycarbonate characteristics and coating methods are analyzed and the PV blind design for a small office is suggested. Also, the mock-up model of a suggesting system was made. The field tests were controled based on a solar altitude under clear sky conditions. As results, it is necessary to use a polycarbonate instead of a tempered glass for a light-weight PV. The shading effects of blind systems are high in slat angle $30^{\circ}$ and low in $0^{\circ}$. Also, the shading ratio is more affected by solar latitude than solar altitude. The shading change rate is relevantly constant on the solar altitude.

Enhanced Light Harvesting from F$\ddot{o}$rst-type resonance Energy Transfer in the Quasi-Solid State Dye-Sensitized Solar Cells (F$\ddot{o}$rst energy transfer 를 적용한 준고체 DSSC 의 효율향상)

  • Cheon, Jong Hun;Lee, Jeong Gwan;Yang, Hyeon Seok;Kim, Jae Hong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.117.1-117.1
    • /
    • 2011
  • We have demonstrated Forst-type resonance energy transfer (FRET) in the quasi-solid type dye-sensitized solar cells between organic fluorescence materials as an energy donor doped in polymeric gel electrolyte and ruthenium complex as an energy acceptor on surface of $TiO_2$. The strong spectral overlap of emission/absorption of energy donor and acceptor is required to get high FRET efficiency. The judicious choice of energy donor allows the enhancement of light harvesting characters of energy acceptor in quasi-solid dye sensitized solar cells which increase the power conversion efficiency. The enhanced light harvesting effect by the judicious choice/design of the fluorescence materials and sensitizing dyes permits the enhancement of photovoltaic performance of DSSC.

  • PDF

무전해 도금을 적용한 결정질 실리콘 태양전지의 효율 향상

  • Jeong, Myeong-Sang;Jang, Hyo-Sik;Song, Hui-Eun;Gang, Min-Gu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.686-686
    • /
    • 2013
  • Crystalline silicon solar cell is a semiconductor device that converts light into electrical energy. Screen printing is commonly used to form the front/back electrodes in silicon solar cell. Screen printing method is convenient but usually shows high resistance and low aspect ratio, which cause the efficiency decrease in crystalline silicon solar cell. Recently the plating method is applied in c-Si solar cell to reduce the resistance and improve the aspect ratio. In this paper, we investigated the effect of additional electroless Ag plating into screen-printed c-Si solar cell and compared their electrical properties. All wafers used in this experiment were textured, doped, and anti-reflection coated. The electrode formation was performed with screen-printing, followed by the firing step. Aften then we carried out electroless Ag plating by changing the plating time in the range of 20 sec~5 min and light intensity. The light I-V curve and optical microscope were measured with the completed solar cell. As a result, the conversion efficiency of solar cells was increased mainly due to the decreased series resistance.

  • PDF