• Title/Summary/Keyword: Solar energy transmittance

Search Result 149, Processing Time 0.03 seconds

Electrical and Optical Properties of $SnO_2$ : F Thin Films by Pyrosol Method (Pyrosol 법에 의한 $SnO_2$ : F 박막의 전기적 광학적 특성)

  • Yoon, Kyung-Hoon;Song, Jin-Soo;Kang, Gi-Hoan
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.187-190
    • /
    • 1990
  • A new technique is described for developing low-cost $SnO_2$ : F thin films as TCO (Transparent Conducting Oxide) substrate of a-Si solar cells. A novel Pyrosol equipment has been developed, and $SnO_2$ : F thin films have been deposited under the condition of varing dopant concentration, temperature and composition rate of solution. Futhermore, electrical and optical properties of thin films have been measured, and exhibit resistivity of $4.3{\times}10^{-4}{\Omega}$ cm and transmittance of 80% which is almost at the same level as those of $SnO_2$ : F thin films by CVD.

  • PDF

PREPARATION AND PROPERTIES OF EIECTROCHROMIC WINDOW COATING BY THE SOL-GEL METHOD (졸-겔 방법에 의한 전기적 착색 박막의 제작과 특성)

  • Lee, Kil-Dong
    • Solar Energy
    • /
    • v.12 no.2
    • /
    • pp.18-27
    • /
    • 1992
  • Multilayer coatings of $WO_3$ were deposited by the sol-gel technique on microscope slide glass and ITO coated glass. These films were characterized optically, chemically, and structurally by XRD, spectro-photometry, DTA/TGA, SEM/EDAX and RBS. Uniform $WO_3$ sol-gel films were dip coated on slide glass at dipping speed of 5mm/s. This sample indicated a low near IR transmittance in optical properties as a result of coloration using a dilute HCI electrolyte as the $H^+$ion sources. Differential thermal analysis results have allowed the accurate determination of the formation temperature of the $WO_3$ crystalline phase from the gel data in the range of $380^{\circ}C{\sim}500^{\circ}C$, consistent with crystallization temperature of sol-gel film. RBS spectrometry was performed on the uncolored $WO_3$ sol-gel film, yielding a chemical composition of $WO_3$.

  • PDF

Fabrication of a Transparent Electrode for a Flexible Organic Solar Cell in Atomic Layer Deposition (ALD 공정을 이용한 플렉시블 유기태양전지용 투명전극 형성)

  • Song, Gen-Soo;Kim, Hyoung-Tae;Yoo, Kyung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.121.2-121.2
    • /
    • 2011
  • Aluminum-doped Zinc Oxide (AZO) is considered as an excellent candidate to replace Indium Tin Oxide (ITO), which is widely used as transparent conductive oxide (TCO) for electronic devices such as liquid crystal displays (LCDs), organic light emitting diodes (OLEDs) and organic solar cells (OSCs). In the present study, AZO thin film was applied to the transparent electrode of a channel-shaped flexible organic solar cell using a low-temperature selective-area atomic layer deposition (ALD) process. AZO thin films were deposited on Poly-Ethylene-Naphthalate (PEN) substrates with Di-Ethyl-Zinc (DEZ) and Tri-Methyl-Aluminum (TMA) as precursors and $H_2O$ as an oxidant for the atomic layer deposition at the deposition temperature of $130^{\circ}C$. The pulse time of TMA, DEZ and $H_2O$, and purge time were 0.1 second and 20 second, respectively. The electrical and optical properties of the AZO films were characterized as a function of film thickness. The 300 nm-thick AZO film grown on a PEN substrate exhibited sheet resistance of $87{\Omega}$/square and optical transmittance of 84.3% at a wavelength between 400 and 800 nm.

  • PDF

Study of SF6/Ar plasma based textured glass surface morphology for high haze ratio of ITO films in thin film solar cell

  • Kang, Junyoung;Hussain, Shahzada Qamar;Kim, Sunbo;Park, Hyeongsik;Le, Anh Huy Tuan;Yi, Junsin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.430.2-430.2
    • /
    • 2016
  • The front transparent conductive oxide (TCO) films in thin fill solar cell should exhibit high transparency, conductivity, good surface morphology and excellent light scattering properties. The light trapping phenomenon is limited due to random surface structure of TCO films. The proper control of surface structure and uniform cauliflower TCO films may be appropriate for efficient light trapping. We report light trapping scheme of ICP-RIE glass texturing by SF6/Ar plasma for high roughness and haze ratio of ITO films. It was observed that the variation of etching time, pattern size and Ar flow ratio during ICP-RIE process were important factors to improve the diffused transmittance and haze ratio of textured glass. The ICP-RIE textured glass showed low etching rates due to the presence of metal elements like Al, B, F and Na. The ITO films deposited on textured glass substrates showed the high RMS roughness and haze ratio in the visible wavelength region. The change in surface morphology showed negligible influence on electrical and structural properties of ITO films. The ITO films with high roughness and haze ratio can be used to improve the performance of thin film solar cells.

  • PDF

The electrical properties and microstructure of ITO films deposited by ion beam sputtering (이온빔 스퍼터링 증착 ITO 박막의 미세 구조와 전기적 특성)

  • Han, Y.G.;Cho, J.S.;Koh, S.K.;Kim, D.H.
    • Solar Energy
    • /
    • v.20 no.2
    • /
    • pp.55-65
    • /
    • 2000
  • Better electrical and optical properties of ITO thin films were demanded for the window layer of CdS/CdTe solar cells. To match that demand, an ion beam sputtering system was used for the deposition of ITO thin films. The substrate temperature and ion beam energy were controlled to deposit high quality ITO thin films in two cases of Ar ion sputtering and Ar+$O_2$ ion sputtering. The microstructure changed from domain structure in ITO deposited by Ar ions to grain structure in ITO deposited by Ar+$O_2$ ions. The lowest resistivity of ITO films was $1.5\times10^{-4}{\Omega}cm$ at $100^{\circ}C$ substrate temperature in case of Ar ions sputtering. Transmittance in the visible range was over 80% above $100^{\circ}C$ substrate temperature.

  • PDF

Thermal Performance of TI-wall System (투과형단열재 부착 건물외피구조체의 열성능)

  • Yoon, Yong-Jin;Kim, Hea-Jeong;Kim, Byoung-Soo
    • KIEAE Journal
    • /
    • v.4 no.3
    • /
    • pp.121-128
    • /
    • 2004
  • One of the most weak parts for energy loss through the whole building components are building envelopes. Lots of technbologies to increase the thermal performance of building envelopes have been introduced in recent years. Transparent insulation is a new technology for building insulation and has function both solar transmittance and thermal insulation. This study has been carried out to develope the transparent insulation panels and TI-wall system and to analyze the thermal performance of TI-wall system by experiments using test-cell and dynamic energy simulation program ESP-r 9.0. This system is regarded as a efficient building envelope system suitable for to reduce the heating and cooling load of the buildings in our country.

Transparent MWCNT Thin Films Fabricated by using the Spray Method (스프레이법으로 제작된 투명 MWCNT 박막)

  • Jang, Kyung-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.4
    • /
    • pp.338-342
    • /
    • 2010
  • Carbon nanotubes (CNTs) have excellent electrical, chemical stability, mechanical and thermal properties. The MWCNT films were investigated as a transparent electrode for the solar cell, OLED, and field-emission display. MWCNT films were fabricated by air spray method, whose process is quite low-costed, using the multi-walled CNTs solution on glass substrates. Moreover, the most stable film was fabricated when the spraying time was 60 sec. The film that was sprayed with the MWCNT dispersion for 60 sec, has 300nm thick. And its electric resistivity, transmittance rate, mobility and carrier concentration are $6{\times}10^{-2}{\Omega}{\cdot}cm$, 50% at ${\lambda}=550mm$, $4.3{\times}10^{-2}cm^2/V{\cdot}s$ and $2.1{\times}10^{21}cm^{-3}$, respectively. Also, absorption energy of MWCNT films show from 3.9 eV to 4.6 eV. Furthermore, we can use MWCNT films fabricated by the spray method for the transparent electrode.

The analysis on long-term durability and output power characteristics of PV modules by variation on local thermal property (태양전지모듈의 국부적 열특성 변화에 따른 장기적 내구성 및 출력특성 분석)

  • Kang, Gi-Hwan;Kim, Kyung-Soo;Park, Chi-Hong;Yu, Gwon-Jong;Ahn, Hyung-Keun;Han, Deuk-Young
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.214-215
    • /
    • 2007
  • Int this paper, we studied the analysis on long-term durability and output power characteristics of PV modules by variation on local thermal property. Using 5 modules(80W), we measured the maximum output power change during the test period. And the optical transmittance of glass was compared with PV module's maximum power fluctuation. The external environment change effected contamination on the entire or local surface of module. This caused the local temperature variation of each solar cell on PV module. The specific analysis is shown in the following paper.

  • PDF

A Study of Moth-eye Nano Structure Embedded Optical Film with Mitigated Output Power Loss in PERC Photovoltaic Modules (PERC 태양전지 모듈의 출력저하 방지를 위한 모스아이(Moth-eye) 광학필름 연구)

  • Oh, Kyoung-suk;Park, Jiwon;Choi, Jin-Young;Chan, Sung-il
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.55-60
    • /
    • 2020
  • The PERC photovoltaic (PV) modules installed in PV power plant are still reports potential-induced degradation (PID) degradation due to high voltage potential differences. This is because Na+ ions in the cover glass of PV modules go through the encapsulant (EVA) and transferred to the surface of solar cells. As positive charges are accumulated at the ARC (SiOx/SiNx) interface where many defects are distributed, shunt-resistance (Rsh) is reduced. As a result, the leakage current is increased, and decrease in solar cell's power output. In this study, to prevent of this phenomenon, a Moth-eye nanostructure was deposited on the rear surface of an optical film using Nano-Imprint Lithography method, and a solar mini-module was constructed by inserting it between the cover glass and the EVA. To analyze the PID phenomenon, a cell-level PID acceleration test based on IEC 62804-1 standard was conducted. Also analyzed power output (Pmax), efficiency, and shunt resistance through Light I-V and Dark I-V. As a result, conventional solar cells were decreased by 6.3% from the initial efficiency of 19.76%, but the improved solar cells with the Moth-eye nanostructured optical film only decreased 0.6%, thereby preventing the PID phenomenon. As of Moth-eye nanostructured optical film, the transmittance was improved by 4%, and the solar module output was improved by 2.5%.

Preparation and characterization of ITO Thin Film By Various Substrate heating temperature (기판온도에 따른 ITO 박막의 제조 및 특성)

  • Kim, Sung Jin;Pak, Hunkyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.94.2-94.2
    • /
    • 2010
  • Indium tin oxide (ITO) Thin films were grown on Non-alkarai glass Substrates by PVD method and Subsequently Subjected to ($100^{\circ}C-350^{\circ}C$) Thermal Annealing (TA) In Nitr Oxygen ambinent. Most of all, The effect of TA treatment on the structural properties were studied by using X-Ray diffraction and atomic force microscopy, while optical properties were studied by UV-Transmittance measurements. After TA treatment, the XRD spectra have shown an effective relaxation of the residual compressive stress, As a result, XRD peaks increase of the intensity and narrowing of full width at half-maximun (FWHM). In addtion The microstructure, The surface morphology, the optical transmittance changed and improved, and we investigated The effects of temperature, Time and atmosphere during the TA on the structural and electrical properties of the ITO/glass on TA at $300^{\circ}C$. As a results, the films are highly transparent (80%~89%) in visible region. AFM analysis shows that the films are very smooth with root mean square surface roughness 0.58nm -2.75nm thickness film. It is observed that resistivity of the films drcreases T0 $1.05{\times}10^{-4}{\Omega}cmt$ $6.06{\times}10^{-4}{\Omega}cm$, while mobility increases from $152cm^2/vs$ to $275cm^2/vs$.

  • PDF