• Title/Summary/Keyword: Solar conversion efficiency

Search Result 851, Processing Time 0.027 seconds

Structure and Characteristics of Tandem Solar Cell Composed of Dye-sensitized Solar Cell and Thermoelectric Generator (염료감응형 태양전지와 열전발전소자를 결합한 복합 태양전지의 구조 및 특성)

  • Lee, Dong-Yoon;Song, Jae-Sung;Lee, Won-Jae;Kim, In-Sung;Jeong, Soon-Jong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.4
    • /
    • pp.357-362
    • /
    • 2005
  • The tandem solar cell composed of a dye-sensitized solar cell (DSC) and a thermoelectric generator (TEG) was designed. In such new cell, the characteristics of DSC and TEG were investigated. DSC uses the wavelength range of 380∼750 nm and has the maximum efficiency of below 10 %. If the solar light transmitted through DSC can be converted to heat energy, TEG can generate electric energy using this heat energy. By this means, it is possible to utilize most of solar energy in the wavelength range of 350∼3000 nm for electric generation and it can be expected to obtain higher solar energy conversion efficiency exceeding the known limit of maximum efficiency. For this purpose we suggest the tandem solar cell constructed with DSC and TEG. In this structure, DSC has a carbon nanotube film as a counter electrode of DSC in order to collect the solar light and convert it to heat energy. We measured the I-V characteristics of DSC and TEG, assembled to the tandem cell. As a result, it was shown that DSC with carbon nanotube and TEG had the efficiency of 9.1 % and 6.2 %, respectively. From this results, it is expected that the tandem solar cell of the new design has the possibility of enhanced conversion efficiency to exceed above 15 %.

A new proposal of three-step dc-dc converter scheme for solar power system

  • Lee, Hee-Chang;Park, Sung-Joon
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.4
    • /
    • pp.358-361
    • /
    • 2007
  • We report on a new type dc-dc converter design that combines the advantage of dc ripple noise elimination and high efficiency. As potential low cost solar cells, DSC module and the panel's system efficiency and stability are still critical problems to the way of marketing. In this study, a new three-step dc-dc converter scheme with the phase-shift-carrier technology is proposed to apply for solar power system. We have achieved power conversion efficiency around 94.88%.

Perovskite solar cell (페로브스카이트 태양전지)

  • Lee, Jin-Wook;Park, Nam-Gyu
    • Vacuum Magazine
    • /
    • v.1 no.4
    • /
    • pp.10-13
    • /
    • 2014
  • Since the development of 9.7% efficient long-term stable solid state perovskite solar cell in 2012, intensive study on perovskite solar cell has been performed. As a result, power conversion efficiency (PCE) has reached 20.1%. In-dept study on perovskite light absorber enabled understanding of origin of superb photovoltaic performance of perovskite solar cell. In this article, historical evolutions of perovskite solar cell along with key physical properties enabling high PCE are presented. Several important results for development of high efficiency perovskite solar cell are introduced. Finally, in-present research issues and future direction for solving these issues are discussed.

Improving Efficiencies of DSC by Down-conversion of LiGdF4:Eu (Eu이 도핑된 LiGdF4의 Down-conversion을 이용한 염료감응형 태양전지의 효율 향상)

  • 김현주;송재성;김상수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.3
    • /
    • pp.323-328
    • /
    • 2004
  • Down-conversion of Eu$^{3+}$ doped LiGdF$_4$ (LGF) for increasing the cell efficiency on dye-sensitized Ti $O_2$ solar cells has been studied. The dye sensitized solar cell (DSC) consisting of mesoporous Ti $O_2$ electrode deposited on transparent substrate, an electrolyte containing I$^{[-10]}$ /I$_3$$^{[-10]}$ redox couple, and Pt counter electrode is a promising alternative to the inorganic solar cell. The structure of DSC is basically a sandwich type, viz., FTO glass/Ru-red dye-absorbed Ti $O_2$/iodine electrolyte/sputtered Pt/FTO glass. The cell without down converter had open circuit potential of approximately 0.66 Volt, the short circuit photocurrent density of 1.632 mA/$\textrm{cm}^2$, and fill factor of about 50 % at the excitation wavelength of 550 nm. In addition, 5.6 mW/$\textrm{cm}^2$ incident light intensity beam was used as a light source. From this result, the calculated monochromatic efficiency at the wavelength of 550 nm of this cell was about 9.62 %. The incident photon to current conversion efficiency (IPCE) of N3 used as a dye in this work is about 80 % at around 590 nm and 610 nm, which is the emission spectrum of Eu$^{3+}$ doped LGF, results in efficiency increasing of DSC.C.

Development of High Performance Photoelectrode Paste Doped Glass Powder for Dye-sensitized Solar Cells (염료감응형 태양전지용 유리분말이 함유된 고효율 광전극 페이스트 개발)

  • Zhao, Xing Guan;Jin, En Mei;Gua, Hal-Bon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.5
    • /
    • pp.427-431
    • /
    • 2011
  • Hybrid $SiO_2-TiO_2$ photoelectrode with different type of layers was investigated in dye-sensitized solar cells (DSSC). Use of a thin layer of nanocrystalline $TiO_2$ would imply reduction in the amount of dye coverage, however, lower amount of dye in the thin films would imply fewer electron generation upon illumination. So, thus, it becomes necessary to include a $SiO_2-TiO_2$ layer for increase light harvesting effect such that the lower photon conversion due to thin layer could be compensated. In this paper reports the use of transparent high surface area $TiO_2$ layer and an additional $SiO_2-TiO_2$ layer, thus ensuring adequate light harvesting in these devices. The best solar conversion efficiency 6.6% under AM 1.5 was attained with a multi-layer structure using $TiO_2$ layer/$SiO_2-TiO_2$ layer/$TiO_2$ layer for the light harvesting and this had resulted to about 44% increase in photocurrent density of dye-sensitized solar cells.

Efficiency Enhancement in Organic Polymer Solar Cells with Ferroelectric Films (강유전 고분자 박막을 이용한 유기고분자 태양전지에서의 효율 증대)

  • Park, Jayoung;Jung, Chi Sup
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.2
    • /
    • pp.126-132
    • /
    • 2017
  • The power conversion efficiency of organic polymer solar cells was enhanced by introducing a ferroelectric polymer layer at the interface between active layer and metal electrode. The power conversion efficiency was increased by 50% through the enhancement of the open circuit voltage. To investigate the role of the ferroelectric layer on the dissociation process of the excitons, non-radiative portion of the exciton decay was directly measured by using photoacoustic technique. The results show that the ferroelectric nature of the buffer layer does not play any roles on the dissociation process of the excitons, which indicates the efficiency enhancement is not due to the ferroelectricity of the buffer layer.

The High Efficiency of Amorphous-Si Solar Cells Prepared by Photo-CVD System (광(光) CVD 법(法)에 의한 a-Si 태양전지(太陽電池)의 고효율화에 관한 연구(硏究))

  • Kim, Tae-Seoung
    • Solar Energy
    • /
    • v.5 no.2
    • /
    • pp.46-53
    • /
    • 1985
  • Hydrogenated amorphous silicon solar cells which are fabricated by photo-chemical vapor deposition (photo-CVD) system has been investigated. In the photo-CVD system which consists of three separate reaction chambers, low-pressure mercury lamp has been used as a light source. The main reactant ($Si_2H_6/He$) gases which are premixed with a small amount of mercury vapor in a mercury-vaporizer kept at $50^{\circ}C$ have been used. Using $C_2H_2$ and $SiH_2(CH_3)_2$ as the carbon source, p-type wide band gap a-SiC:H films have been obtained. The result has been found that the undoped layers of the pin/substrate solar cells are influenced by the residual impurities, such as phosphorus and boron during the deposition process. By minimizing the effect of the impurities in the i-layer and optimizing conditions at the p-layer and p/i interface, the energy conversion efficiency of 9.61 % under AM-1 ($100mW/Cm^2$) has been achieved for pin/substrate solar cells illuminated through their p-layers, using the three separate reaction chamber apparatus. It is expected that a-SiC:H solar cells with the energy conversion efficiency over 10% have been fabricated by Photo-CVD method.

  • PDF

Solar Power Generation System Using A Small-Sized Stirling Engine (소형 스털링 엔진을 이용한 태양열 발전 시스템)

  • Kim, Ki-Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3339-3344
    • /
    • 2012
  • To evaluate solar energy conversion efficiency of a solar power generation system that consists of a dish-type solar receiver in the combination with a Stirling engine, a solar power generation system using a small-sized Stirling engine was developed in this study, and preliminary experiments were carried out. The total capital fee was around five hundred thousand Won, and the developed system was found to produce an electricity of 0.56 kWh corresponding to 10% in the energy conversion efficiency. The better design of the system is expected to improve the system efficiency, and the experimental data obtained in this study will be used for other various applications associated with solar power generation.

Construction and Testing of a radiation-beam powered TA (ThermoAcoustic) washer for grease removal

  • Chen, Kuan;DaCosta, David H.;Kim, Yeongmin;Oh, Seung Jin;Chun, Wongee
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.1
    • /
    • pp.21-28
    • /
    • 2015
  • A small washer powered directly and solely by thermal radiation was constructed and tested to explore the feasibility of using solar energy or other types of thermal radiation for washing and cleaning. In principle, TA (ThermoAcoustic) washers have the benefits of simpler design and operation and fewer energy conversion processes, thus should be more energy efficient and cost less than electric washing/cleaning systems. The prototype TA converter we constructed could sustain itself with consistent fluid oscillations for more than 20 minutes when powered by either concentrated solar radiation or an IR (infrared) heater. The frequencies of water oscillations in the wash chamber ranged from 2.6 to 3.6 Hz. The overall conversion efficiency was lower than the typical efficiencies of TA engines. Change in water temperature had little effect on the oscillatory flow in the TA washer due to its low efficiency. On the other hand higher water temperatures enhanced grease removal considerably in our tests. Methods for measuring the overall conversion efficiency, frictional loss, and grease removal of the TA washing system we designed were developed and discussed.

Enhancement of Photoelectric Efficiency in a Dye-sensitized Solar Cell Using Hollow TiO2 Nanoparticles as an Overlayer

  • Lee, Kyoung-No;Kim, Woo-Byoung;Lee, Caroline Sunyong;Lee, Jai-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1853-1856
    • /
    • 2013
  • $TiO_2$ hollow nanoparticles (HNPs) and their light scattering effect which influences on the photoelectric conversion efficiency of a dye-sensitized solar cell (DSSC) were investigated. When only HNPs were employed in DSSC as the anode layer material, the conversion efficiency (e.g., 0.96%) was the lowest, possibly due to scattering loss of incident light. However, DSSC fabricated by using HNPs as a scattering overlayer on the $TiO_2$ nanoparticles (P-25), showed higher conversion efficiency (4.02%) than that without using HNPs (3.36%).