• Title/Summary/Keyword: Solar Wafer

Search Result 281, Processing Time 0.025 seconds

A Review on TOPCon Solar Cell Technology

  • Yousuf, Hasnain;Khokhar, Muhammad Quddamah;Chowdhury, Sanchari;Pham, Duy Phong;Kim, Youngkuk;Ju, Minkyu;Cho, Younghyun;Cho, Eun-Chel;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.9 no.3
    • /
    • pp.75-83
    • /
    • 2021
  • The tunnel oxide passivated contact (TOPCon) structure got more consideration for development of high performance solar cells by the introduction of a tunnel oxide layer between the substrate and poly-Si is best for attaining interface passivation. The quality of passivation of the tunnel oxide layer clearly depends on the bond of SiO in the tunnel oxide layer, which is affected by the subsequent annealing and the tunnel oxide layer was formed in the suboxide region (SiO, Si2O, Si2O3) at the interface with the substrate. In the suboxide region, an oxygen-rich bond is formed as a result of subsequent annealing that also improves the quality of passivation. To control the surface morphology, annealing profile, and acceleration rate, an oxide tunnel junction structure with a passivation characteristic of 700 mV or more (Voc) on a p-type wafer could achieved. The quality of passivation of samples subjected to RTP annealing at temperatures above 900℃ declined rapidly. To improve the quality of passivation of the tunnel oxide layer, the physical properties and thermal stability of the thin layer must be considered. TOPCon silicon solar cell has a boron diffused front emitter, a tunnel-SiOx/n+-poly-Si/SiNx:H structure at the rear side, and screen-printed electrodes on both sides. The saturation currents Jo of this structure on polished surface is 1.3 fA/cm2 and for textured silicon surfaces is 3.7 fA/cm2 before printing the silver contacts. After printing the Ag contacts, the Jo of this structure increases to 50.7 fA/cm2 on textured silicon surfaces, which is still manageably less for metal contacts. This structure was applied to TOPCon solar cells, resulting in a median efficiency of 23.91%, and a highest efficiency of 24.58%, independently. The conversion efficiency of interdigitated back-contact solar cells has reached up to 26% by enhancing the optoelectrical properties for both-sides-contacted of the cells.

Printing Properties of Ag Paste with the Variation of Binder on the SiNx Coated Si Wafer (SiNx 층이 코팅된 Si Wafer에 바인더 종류에 따른 Ag 페이스트의 인쇄 특성)

  • Kang, Jea Won;Shin, Hyo Soon;Yeo, Dong Hun;Jeong, Dae Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.2
    • /
    • pp.85-90
    • /
    • 2014
  • Ag paste has been used in the front electrode of the Si-solar cell. It is composed by Ag powder, glass frit, binder, solvent and dispersant. The role of the binder and the solvent is to make a flow and a printing property. However, it was not enough to report the printing properties with the variation of binder in the controled viscosity. In this study, we selected 3 kinds of typical binder which were used as binder for the paste in the industry, such as Ethyl cellulose, Hydroxypropyl cellulose and Acrylic. Ag pastes using these were prepared, controled viscosity and printed on the SiNx coated Si wafer. In the 'A paste' used Acrylic binder, printed hight was highest and 'H paste' used Hydroxypropyl cellulose binder was lowest. Because 'H paste' was high viscosity due to the molecular weight, the solvent was added in the paste to control the viscosity. Therefore, the content of solid was lower in 'H paste'. The relative pattern width which is related to the spreading of paste was the best in the case of 'H paste' and 'EH paste' at $30^{\circ}C$. It is thought that the optimization of the relative pattern width is possible for a paste by the controling shear thinning phenomenon. In the case of 'A paste', though printing hight was best, the pattern width was dependant on the temperature.

Comparison of Contact Resistivity Measurements of Silver Paste for a Silicon Solar Cell Using TLM and CTLM (TLM 및 CTLM을 이용한 실리콘 태양전지 전면전극소재의 접촉 비저항 측정 비교연구)

  • Shin, Dong-Youn;Kim, Yu-Ri
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.6
    • /
    • pp.539-545
    • /
    • 2014
  • Contact resistivity between silver electrodes and the emitter layer of a silicon solar cell wafer has been measured using either the circular transmission line method or the linear transmission line method. The circular transmission line method has an advantage over the linear transmission line method, in that it does not require an additional process for mesa etching to eliminate the leakage current. In contrast, the linear transmission line method has the advantage that its specimen can be acquired directly from a silicon solar cell. In this study, measured resistance data for the calculation of contact resistivity is compared for these two methods, and the mechanism by which the linear transmission line method can more realistically reflect the impact of the width and thickness of a silver electrode on contact resistivity is investigated.

An Analysis on rear contact for crystalline silicon solar cell (결정질 실리콘 태양전지에 적용하기 위한 후면전극 형성에 관한 연구)

  • Kwon, Hyukyong;Lee, Jaedoo;Kim, Minjung;Lee, Soohong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.91.1-91.1
    • /
    • 2010
  • There are some methods for increasing efficiency of crystalline silicon solar cells. Among them, It is important to reduce the recombination loss of surface for high efficiency. In order to reduce recombination loss is a way to use the BSF(Back Surface Field). The BSF on the back of the p-type wafer forms a p+layer. so, it is prevented to act electrons of the p-area for the rear recombination. As a result, the leakage current is reduced and the rear-contact has a good Ohmic contact. therefore, open-circuit-voltage and Fill factor(FF) of solar cells are increased. This paper investigates the formation of rear contact process comparing Aluminum-paste(Al-paste) with Aluminum-Metal(99.9%). It is shown that the Aluminum-Metal provides high conductivity and low contact resistance of $21.35m{\Omega}cm$ using the Vacuum evaporation process but, it is difficult to apply the standard industrial process because high Vacuum is needed and it costs a tremendous amount more than Al-paste. On the other hand, using the Al-paste process by screen printing is simple for formation of metal contact and it is possible to produce the standard industrial process. however, it is lower than Aluminum-Metal(99.9) of conductivity because of including mass glass frit. In this study, contact resistances were measured by 4-point prove. each of contact resistances is $21.35m{\Omega}cm$ of Aluminum-Metal and $0.69m{\Omega}cm$ of Al-paste. and then rear contact have been analyzed by Scanning Electron Microscopy(SEM).

  • PDF

Doping Controlled Emitter with a Transparent Conductor for Crystalline Si Solar Cells

  • Kim, Min-Geon;Kim, Hyeon-Yeop;Choe, U-Jin;Lee, Jun-Sin;Kim, Jun-Dong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.590-590
    • /
    • 2012
  • A transparent conducting oxide (TCO) layer was applied in crystalline Si (c-Si) solar cells without use of the conventional SiNx-coating. A high quality indium-tin-oxide (ITO) layer was directly deposited on an emitter layer of a Si wafer. Three different types of emitters were formed by controlling the phosphorous diffusion condition. A light-doped emitter forming a thinner emitter junction showed an improved photoconversion efficiency of 14.1% comparing to 13.2% of a heavy-doped emitter. This was induced by lower recombination within a narrower depletion region of the light-doped emitter. In the aspect of light management, the intermediate refractive index of ITO is effective to reduce the light reflection leading the enhanced carrier generation in a Si absorber. For the electrical aspect, the ITO layer serves as an efficient electrical conductor and thus relieves the burden of high contact resistance of the light-doped emitter. Additionally, the ITO works as a buffer layer of Ag and Si and certainly prevents the shunting problem of Ag penetration into Si emitter region. It discusses an efficient design scheme of TCO-embedded emitter Si solar cells.

  • PDF

Effect of Design Parameters on the Efficiency of the Solar Cells Fabricated Using SOI Structure (SOI 구조 이용한 결정질 규소 태양전지의 최적설계)

  • Lee, Gang-Min;Kim, Yeong-Gwan
    • Korean Journal of Materials Research
    • /
    • v.9 no.9
    • /
    • pp.890-895
    • /
    • 1999
  • The recent important issue in solar cell fabrication is to adopt thin film silicon solar cells on cheap substrates. However, thin cells demand new grid design concept that all the contacts(to the emitter and base) be located on the front surface. Hence, the aim of the investigation presented in this paper was to determine the potential and the basic limitation of the design. With this concept, an interdigitated front grid structure was realized and cells were fabricated through a set of photolithography processes. Confirmed efficiencies of up to 11.5% were achieved on bonded SOI wafers with a cell thickness of 50$\mu\textrm{m}$ in the case of finger spacing more than $\mu\textrm{m}$ and a base width of 35$\mu\textrm{m}$. It was also shown from the results that the design rules for optimizing the base fraction and reducing the shadowing fraction are noted as an important technique to realize high-efficiency thin silicon solar cells.

  • PDF

The fabrication of ITO/p-InP solar cells (ITO/p-InP 태양전지 제작)

  • 맹경호;김선태;송복신;문동찬
    • Electrical & Electronic Materials
    • /
    • v.7 no.3
    • /
    • pp.243-251
    • /
    • 1994
  • ITO(Indium Tin Oxide) film with thickness of 1500.angs. was prepared by an e-beam evaporator onto a glass and a p-type InP wafer (100) LEC grown Zn-doped p=2.3*10$\^$16/cm$\^$-3/), in which the components of ITO used for evaporation source were hot pressed pellets 1 mole% ln$\_$2/O$\_$3/+9 mole% SnO$\_$2/, and evaporated in O$\_$2/ ambient. The optimum conditions to preparation of ITO thin film were the substrate temperature of 350.deg. C, the injected oxygen pressure of 2*10$\^$-4/ torr, and the evaporation speed of 0.2-0.3.angs./sec, respectively. In these optimum conditions, the resistivity and the carrier concentration were 5.3*10$\^$-3/ .ohm.-cm, 6.5*10$\^$20/cm$\^$-3/, and the transmittance was over 80%. From the results of J-V measurements in ITO/p-InP structure solar cells, the higher pressure of injected oxygen, the more open circuit voltage. The efficiency of ITO/p-InP solar cell without the grid line contact, prepared by the optimum evaporation conditions, was 7.19%. By using the grid line contact, the efficiency, the open circuit voltage, the short circuit current density, the fill factor, the series resistance, and the shunt resistance were 8.5%, 0.47V, 29.48 mAcm$\^$-2/ , 61.35%, 3.ohm., and 26.6k.ohm., respectively.

  • PDF

Analysis of the Formation of Rear Contact for Monocrystalline Silicon Solar Cells (단결정 실리콘 태양전지의 후면 전극형성에 관한 비교분석)

  • Kwon, Hyuk-Yong;Lee, Jae-Doo;Kim, Min-Jeong;Lee, Soo-Hong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.7
    • /
    • pp.571-574
    • /
    • 2010
  • Surface recombination loss should be reduced for high efficiency of solar cells. To reduce this loss, the BSF (back surface field) is used. The BSF on the back of the p-type wafer forms a p+layer, which prevents the activity of electrons of the p-area for the rear recombination. As a result, the leakage current is reduced and the rear-contact has a good Ohmic contact. Therefore, the open-circuit-voltage (Voc) and fill factor (FF) of solar cells are increased. This paper investigates the formation of the rear contact process by comparing aluminum-paste (Al-paste) with pure aluminum-metal(99.9%). Under the vacuum evaporation process, pure aluminum-metal(99.9%) provides high conductivity and low contact resistance of $4.2\;m{\Omega}cm$, but It is difficult to apply the standard industrial process to it because high vacuum is needed, and it's more expensive than the commercial equipment. On the other hand, using the Al-paste process by screen printing is simple for the formation of metal contact, and it is possible to produce the standard industrial process. However, Al-paste used in screen printing is lower than the conductivity of pure aluminum-metal(99.9) because of its mass glass frit. In this study, contact resistances were measured by a 4-point probe. The contact resistance of pure aluminum-metal was $4.2\;m{\Omega}cm$ and that of Al-paste was $35.69\;m{\Omega}cm$. Then the rear contact was analyzed by scanning electron microscope (SEM).

Review of the Silicon Oxide and Polysilicon Layer as the Passivated Contacts for TOPCon Solar Cells

  • Mengmeng Chu;Muhammad Quddamah Khokhar;Hasnain Yousuf;Xinyi Fan;Seungyong Han;Youngkuk Kim;Suresh Kumar Dhungel;Junsin Yi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.3
    • /
    • pp.233-240
    • /
    • 2023
  • p-type Tunnel Oxide Passivating Contacts (TOPCon) solar cell is fabricated with a poly-Si/SiOx structure. It simultaneously achieves surface passivation and enhances the carriers' selective collection, which is a promising technology for conventional solar cells. The quality of passivation is depended on the quality of the tunnel oxide layer at the interface with the c-Si wafer, which is affected by the bond of SiO formed during the subsequent annealing process. The highest cell efficiency reported to date for the laboratory scale has increased to 26.1%, fabricated by the Institute for Solar Energy Research. The cells used a p-type float zone silicon with an interdigitated back contact (IBC) structure that fabricates poly-Si and SiOx layer achieves the highest implied open-circuit voltage (iVoc) is 750 mV, and the highest level of edge passivation is 40%. This review presents an overview of p-type TOPCon technologies, including the ultra-thin silicon oxide layer (SiOx) and poly-silicon layer (poly-Si), as well as the advancement of the SiOx and poly-Si layers. Subsequently, the limitations of improving efficiency are discussed in detail. Consequently, it is expected to provide a basis for the simplification of industrial mass production.

Research on Minimizing Output Degradation in HJT Cell Separation Using IR Laser Scribing (IR 레이저 스크라이빙에 의한 HJT 셀 분할 시 출력 감소율 최소화에 대한 연구)

  • Eunbi Lee;Sungmin Youn;Minseob Kim;Jinho Shin;Yu Jin Kim;Jeonghun Kim;Min-Joon Park;Chaehwan Jeong
    • Current Photovoltaic Research
    • /
    • v.12 no.2
    • /
    • pp.37-40
    • /
    • 2024
  • One of the current innovation trends in the solar industry is the increase in the size of silicon wafers. As the wafer size increases, the series resistance of the module rises, highlighting the need for research on methods for cutting and bonding solar cells. Among these, the Infrared (IR) laser scribing technique has been extensively researched. However, there is still insufficient optimization research regarding the thermal damage caused by lasers on the Transparent Conductive Oxide (TCO) layer of Heterojunction (HJT) solar cells. Therefore, in this study, we systematically varied conditions such as IR laser scribing speed, frequency, power, and the number of scribes to investigate their impact on the performance of cut cells under each condition. Additionally, we conducted a comparative analysis of thermal damage effects on the TCO layer based on varying scribing depths.