• 제목/요약/키워드: Solar Power Generation Forecast

검색결과 27건 처리시간 0.036초

Optimal Allocation of Distributed Solar Photovoltaic Generation in Electrical Distribution System under Uncertainties

  • Verma, Ashu;Tyagi, Arjun;Krishan, Ram
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권4호
    • /
    • pp.1386-1396
    • /
    • 2017
  • In this paper, a new approach is proposed to select the optimal sitting and sizing of distributed solar photovoltaic generation (SPVG) in a radial electrical distribution systems (EDS) considering load/generation uncertainties. Here, distributed generations (DGs) allocation problem is modeled as optimization problem with network loss based objective function under various equality and inequality constrains in an uncertain environment. A boundary power flow is utilized to address the uncertainties in load/generation forecasts. This approach facilitates the consideration of random uncertainties in forecast having no statistical history. Uncertain solar irradiance is modeled by beta distribution function (BDF). The resulted optimization problem is solved by a new Dynamic Harmony Search Algorithm (DHSA). Dynamic band width (DBW) based DHSA is proposed to enhance the search space and dynamically adjust the exploitation near the optimal solution. Proposed approach is demonstrated for two standard IEEE radial distribution systems under different scenarios.

Gompertz 곡선을 이용한 비선형 일사량-태양광 발전량 회귀 모델 (Non-linear Regression Model Between Solar Irradiation and PV Power Generation by Using Gompertz Curve)

  • 김보영;알바 빌라노바 코르테존;김창기;강용혁;윤창열;김현구
    • 한국태양에너지학회 논문집
    • /
    • 제39권6호
    • /
    • pp.113-125
    • /
    • 2019
  • With the opening of the small power brokerage business market in December 2018, the small power trading market has started in Korea. Operators must submit the day-ahead estimates of power output and receive incentives based on its accuracy. Therefore, the accuracy of power generation forecasts is directly affects profits of the operators. The forecasting process for power generation can be divided into two procedure. The first is to forecast solar irradiation and the second is to transform forecasted solar irradiation into power generation. There are two methods for transformation. One is to simulate with physical model, and another is to use regression model. In this study, we found the best-fit regression model by analyzing hourly data of PV output and solar irradiation data during three years for 242 PV plants in Korea. The best model was not a linear model, but a sigmoidal model and specifically a Gompertz model. The combined linear regression and Gompertz curve was proposed because a the curve has non-zero y-intercept. As the result, R2 and RMSE between observed data and the curve was significantly reduced.

태양광 발전량 예측 인공지능 DNN-RNN 모델 비교분석 (Comparative Analysis of Solar Power Generation Prediction AI Model DNN-RNN)

  • 홍정조;오용선
    • 사물인터넷융복합논문지
    • /
    • 제8권3호
    • /
    • pp.55-61
    • /
    • 2022
  • 지구 온난화의 주범인 온실가스 감축을 위해 UN은 1992년 기후변화협약을 체결하였다. 우리나라도 온실가스 감축을 위해 재생에너지 보급 확대 정책을 펼치고 있다. 태양에너지를 이용한 재생에너지 개발의 확대는 풍력과 태양광 발전의 확대로 이어졌다. 기상 상황에 영향을 많이 받는 재생에너지 개발의 확대는 전력계통의 수요공급관리에 어려움이 발생하고 있다. 이러한 문제를 해결하기 위해 전력중개시장을 도입하게 되었다. 따라서 전력중개시장 참여를 위해서는 발전량 예측이 필요하다. 본 논문에서는 자체 개발한 예측 시스템을 활용하여 연축태양광발전소에 대하여 분석하였다. 현장 일사량(모델 1)과 기상청 일사량(모델 2)을 적용한 결과 모델 2가 3% 정도 높은 것을 확인하였다. 또한, DNN과 RNN 모델을 비교 분석한 결과 DNN 모델이 예측 정확도가 1.72% 정도 향상되는 것을 확인하였다.

태양광 발전 예보를 위한 UM-LDAPS 예보 모형 성능평가 (Evaluation of UM-LDAPS Prediction Model for Daily Ahead Forecast of Solar Power Generation)

  • 김창기;김현구;강용혁;윤창열
    • 한국태양에너지학회 논문집
    • /
    • 제39권2호
    • /
    • pp.71-80
    • /
    • 2019
  • Daily ahead forecast is necessary for the electricity balance between load and supply due to the variability renewable energy. Numerical weather prediction is usually employed to produce the solar irradiance as well as electric power forecast for more than 12 hours forecast horizon. UM-LDAPS model is the numerical weather prediction operated by Korea Meteorological Administration and it generates the 36 hours forecast of hourly total irradiance 4 times a day. This study attempts to evaluate the model performance against the in situ measurements at 37 ground stations from January to May, 2013. Relative mean bias error, mean absolute error and root mean square error of hourly total irradiance are averaged over all ground stations as being 8.2%, 21.2% and 29.6%, respectively. The behavior of mean bias error appears to be different; positively largest in Chupoongnyeong station but negatively largest in Daegu station. The distinct contrast might be attributed to the limitation of microphysics parameterization for thick and thin clouds in the model.

기상예보를 이용한 태양광 LED 가로등의 효율적 운용에 관한 연구 (A Study on Efficient Management of Solar Powered LED Street Lamp Using Weather forecast)

  • 표세영;권오석;김기환
    • 한국인터넷방송통신학회논문지
    • /
    • 제15권2호
    • /
    • pp.129-135
    • /
    • 2015
  • 본 논문에서는 가로등 운용에 있어서 일기예보 및 일조량을 고려한 알고리즘을 제안하였다. 이 알고리즘에 의해 생성된 Weather Factor를 적용하여 보행자가 있을 시에는 가로등의 광량을 최대로 유지하고 보행자가 없을 경우 최대전력을 사용하지 않고 일정한 밝기를 유지하는 대기전력모드를 사용하여 전력소비를 줄였다. 이렇게 함으로써 배터리의 잔량을 확보할 수 있으며 이를 이용하여 부조일이 지속될 경우 운용일수를 최대한 연장하기 위한 적절한 알고리즘을 제안하였다. 또한 이러한 알고리즘에 필요한 Weather Factor의 값을 실험을 통하여 결정하였으며. 모의실험을 통해 알고리즘의 적합성을 확인하였다.

일기예보를 이용한 일사량 예측기법개발 (Predict Solar Radiation According to Weather Report)

  • 원종민;도근영;허나리
    • 한국항해항만학회지
    • /
    • 제35권5호
    • /
    • pp.387-392
    • /
    • 2011
  • 태양광발전은 독립전원으로써의 가치는 미미하나 도시전체의 탄소발생량 저감 및 화석연료 사용 저감을 위한 분산전원으로써 가치가 매우 높은 전력원이다. 하지만 태양광발전의 경우 기상조건에 따른 발전량 변동이 심하기에 분산전원으로써 효율적으로 사용하기 위해서는 큰 변동폭을 효과적으로 제어하기 위한 실시간 모니터링이 이루어져야 한다. 하지만 태양광발전량을 좌우하는 일사량은 예측치가 존재하지 않기에 이를 예측해야 하고 본 연구에서는 과거의 일사량을 직산분리 하여 구름의 짙은 정도나 두께 등을 유추할 수 있는 대기투과율을 일기예보에서 발표하는 날씨별로 대푯값을 산정하고 이를 일사량 예측식에 대입하여 일사량을 예측하였다. 그리고 실측 일사량 및 CRM(Cloud Cover Radiation Model)기법인 Kasten and Czeplak의 식을 통해 계산된 예측일사량과의 비교를 통해 검증하였다.

An Improved Photovoltaic System Output Prediction Model under Limited Weather Information

  • Park, Sung-Won;Son, Sung-Yong;Kim, Changseob;LEE, Kwang Y.;Hwang, Hye-Mi
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권5호
    • /
    • pp.1874-1885
    • /
    • 2018
  • The customer side operation is getting more complex in a smart grid environment because of the adoption of renewable resources. In performing energy management planning or scheduling, it is essential to forecast non-controllable resources accurately and robustly. The PV system is one of the common renewable energy resources in customer side. Its output depends on weather and physical characteristics of the PV system. Thus, weather information is essential to predict the amount of PV system output. However, weather forecast usually does not include enough solar irradiation information. In this study, a PV system power output prediction model (PPM) under limited weather information is proposed. In the proposed model, meteorological radiation model (MRM) is used to improve cloud cover radiation model (CRM) to consider the seasonal effect of the target region. The results of the proposed model are compared to the result of the conventional CRM prediction method on the PV generation obtained from a field test site. With the PPM, root mean square error (RMSE), and mean absolute error (MAE) are improved by 23.43% and 33.76%, respectively, compared to CRM for all days; while in clear days, they are improved by 53.36% and 62.90%, respectively.

우리나라 비중앙급전발전기의 하루전 출력 예측시스템 개발 (Development of One Day-Ahead Renewable Energy Generation Assessment System in South Korea)

  • 이연찬;임진택;오웅진;;최재석;김진수
    • 전기학회논문지
    • /
    • 제64권4호
    • /
    • pp.505-514
    • /
    • 2015
  • This paper proposes a probabilistic generation assessment model of renewable energy generators(REGs) considering uncertainty of resources, mainly focused on Wind Turbine Generator(WTG) and Solar Cell Generator(SCG) which are dispersed widely in South Korea The proposed numerical analysis method assesses the one day-ahead generation by combining equivalent generation characteristics function and probabilistic distribution function of wind speed(WS) and solar radiation(SR) resources. The equivalent generation functions(EGFs) of the wind and solar farms are established by grouping a lot of the farms appropriately centered on Weather Measurement Station(WMS). First, the EGFs are assessed by using regression analysis method based on typical least square method from the recorded actual generation data and historical resources(WS and SR). Second, the generation of the REGs is assessed by adding the one day-ahead resources forecast, announced by WMS, to the EGFs which are formulated as third order degree polynomials using the regression analysis. Third, a Renewable Energy Generation Assessment System(REGAS) including D/B of recorded actual generation data and historical resources is developed using the model and algorithm predicting one day-ahead power output of renewable energy generators.

중기예보를 이용한 태양광 일사량 예측 연구 (A study on solar radiation prediction using medium-range weather forecasts)

  • 박수진;김효정;김삼용
    • 응용통계연구
    • /
    • 제36권1호
    • /
    • pp.49-62
    • /
    • 2023
  • 급속적으로 비중이 증가하고 있는 태양광 에너지는 지속적인 개발 및 투자가 이루어지고 있다. 신재생에너지 정책인 그린뉴딜과 가정용 태양광 패널의 설치가 증가함에 따라 국내 태양광 에너지 보급이 점차 확대되어 그에 맞추어 발전량의 정확한 수요 예측 연구가 활발하게 진행되고 있는 시점이다. 또한, 일사량 예측이 발전량 수요 예측에 가장 영향을 미치는 요소로 작용하고 있다는 점에서 일사량 예측의 중요성을 파악하였다. 덧붙여, 본 연구는 선행 연구들에서 사용되지 않은 중기예보 기상 데이터를 활용하여 일사량 예측을 하고자 하였다는 점에서 가장 큰 차이점을 확인할 수 있다. 본 논문에서는 서울, 인천, 수원, 춘천, 대구, 대전의 총 여섯 지역의 태양광 일사량 예측을 위하여 다중선형회귀모형, KNN, Random Forest 그리고 SVR 모형과 클러스터링 기법인 K-means 기법을 결합한 후, 클러스터별 확률밀도함수를 계산하여 시간별 일사량 예측을 진행하고자 하였다. 중기예보 데이터를 사용하기 전, 모형 예측 결과를 비교하기 위한 지표로서 MAE (mean absolute error)와 RMSE (root mean squared error)를 사용하였다. 데이터는 2017년 3월 1일부터 2022년 2월 28일까지의 시간별 원 관측 데이터를 중기예보 데이터 양식에 맞추어 일별 데이터로 변환하였다. 모형의 예측 성능 비교 결과, Random Forest로 일별 일사량을 예측한 후, K-means 클러스터링으로 기후요인이 유사한 날짜들을 분류한 뒤 클러스터별 일사량의 확률밀도함수를 계산하여 시간별 일사량 예측값을 나타낸 방법이 가장 우수한 성능을 보였다. 또한 이 방법론을 이용하여 중기예보 데이터에 모형 적합 후, 예측 결과를 확인하였을 때, 일자별로 예측 오류가 상승하는 것을 확인할 수 있었다. 이는 중기예보 기상데이터의 예측 오류로 인한 것으로 보인다. 향후 연구에서는 중기예보 데이터에서 활용할 수 있는 기상요인 중, 강수 여부와 같은 외생 변수를 추가하거나 시계열 클러스터링 기법을 적용한 연구가 이루어져야할 것으로 보인다.

Planning ESS Managemt Pattern Algorithm for Saving Energy Through Predicting the Amount of Photovoltaic Generation

  • Shin, Seung-Uk;Park, Jeong-Min;Moon, Eun-A
    • 통합자연과학논문집
    • /
    • 제12권1호
    • /
    • pp.20-23
    • /
    • 2019
  • Demand response is usually operated through using the power rates and incentives. Demand management based on power charges is the most rational and efficient demand management method, and such methods include rolling base charges with peak time, sliding scaling charges depending on time, sliding scaling charges depending on seasons, and nighttime power charges. Search for other methods to stimulate resources on demand by actively deriving the demand reaction of loads to increase the energy efficiency of loads. In this paper, ESS algorithm for saving energy based on predicting the amount of solar power generation that can be used for buildings with small loads not under electrical grid.