• 제목/요약/키워드: Solar Park

검색결과 2,527건 처리시간 0.032초

Solar radiation forecasting using boosting decision tree and recurrent neural networks

  • Hyojeoung, Kim;Sujin, Park;Sahm, Kim
    • Communications for Statistical Applications and Methods
    • /
    • 제29권6호
    • /
    • pp.709-719
    • /
    • 2022
  • Recently, as the importance of environmental protection has emerged, interest in new and renewable energy is also increasing worldwide. In particular, the solar energy sector accounts for the highest production rate among new and renewable energy in Korea due to its infinite resources, easy installation and maintenance, and eco-friendly characteristics such as low noise emission levels and less pollutants during power generation. However, although climate prediction is essential since solar power is affected by weather and climate change, solar radiation, which is closely related to solar power, is not currently forecasted by the Korea Meteorological Administration. Solar radiation prediction can be the basis for establishing a reasonable new and renewable energy operation plan, and it is very important because it can be used not only in solar power but also in other fields such as power consumption prediction. Therefore, this study was conducted for the purpose of improving the accuracy of solar radiation. Solar radiation was predicted by a total of three weather variables, temperature, humidity, and cloudiness, and solar radiation outside the atmosphere, and the results were compared using various models. The CatBoost model was best obtained by fitting and comparing the Boosting series (XGB, CatBoost) and RNN series (Simple RNN, LSTM, GRU) models. In addition, the results were further improved through Time series cross-validation.

Development of the Camera System for Total Solar Eclipse

  • Kim, Jihun;Choi, Seonghwan;Park, Jongyeob;Bong, Su-Chan;Jang, Bi-Ho;Park, Sung-Joon;Yang, Heesu;Park, Young-Deuk;Cho, Kyungsuk
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.84.3-85
    • /
    • 2017
  • Korea Astronomy and Space Science Institute (KASI) has been developing the Camera System for the Total Solar Eclipse (TSE) observation. In 2016 we have assembled a simple camera system consisting of a commercial camera lens, a polarizer, bandpass filters, and a Canon camera to observe the solar corona during the Total Solar Eclipse in Indonesia. For 2017 TSE observation, we have studied and adapted the compact coronagraph design proposed by NASA. The compact coronagraph design dramatically reduces the volume and weight, and used for TSE observation. The camera is used to test and verify key components including function of bandpass filter, polarizer, and CCD during observing the Total Solar Eclipse. In this poster we focus on optical engineering works including designing, analyzing, testing, and building for the TSE observation.

  • PDF

Characteristics of Solar Wind Density Depletions During Solar Cycles 23 and 24

  • Park, Keunchan;Lee, Jeongwoo;Yi, Yu;Lee, Jaejin;Sohn, Jongdae
    • Journal of Astronomy and Space Sciences
    • /
    • 제34권2호
    • /
    • pp.105-110
    • /
    • 2017
  • Solar wind density depletions are phenomena that solar wind density is rapidly decreased and keep the state. They are generally believed to be caused by the interplanetary (IP) shocks. However, there are other cases that are hardly associated with IP shocks. We set up a hypothesis for this phenomenon and analyze this study. We have collected the solar wind parameters such as density, speed and interplanetary magnetic field (IMF) data related to the solar wind density depletion events during the period from 1996 to 2013 that are obtained with the advanced composition explorer (ACE) and the Wind satellite. We also calculate two pressures (magnetic, dynamic) and analyze the relation with density depletion. As a result, we found total 53 events and the most these phenomena's sources caused by IP shock are interplanetary coronal mass ejection (ICME). We also found that solar wind density depletions are scarcely related with IP shock's parameters. The solar wind density is correlated with solar wind dynamic pressure within density depletion. However, the solar wind density has an little anti-correlation with IMF strength during all events of solar wind density depletion, regardless of the presence of IP shocks. Additionally, In 47 events of IP shocks, we find 6 events that show a feature of blast wave. The quantities of IP shocks are weaker than blast wave from the Sun, they are declined in a short time after increasing rapidly. We thus argue that IMF strength or dynamic pressure are an important factor in understanding the nature of solar wind density depletion. Since IMF strength and solar wind speed varies with solar cycle, we will also investigate the characteristics of solar wind density depletion events in different phases of solar cycle as an additional clue to their physical nature.

Dye-Sensitized Metal Oxide Nanostructures and Their Photoelectrochemical Properties

  • Park, Nam-Gyu
    • 전기화학회지
    • /
    • 제13권1호
    • /
    • pp.10-18
    • /
    • 2010
  • Nanostructured metal oxides have been widely used in the research fields of photoelectrochemistry, photochemistry and opto-electronics. Dye-sensitized solar cell is a typical example because it is based on nanostructured $TiO_2$. Since the discovery of dye-sensitized solar cell in 1991, it has been considered as a promising photovoltaic solar cell because of low-cost, colorful and semitransparent characteristics. Unlike p-n junction type solar cell, dye-sensitized solar cell is photoelectrochemical type and is usually composed of the dye-adsorbed nanocrystalline metal oxide, the iodide/tri-iodide redox electrolyte and the Pt and/or carbon counter electrode. Among the studied issues to improve efficiency of dye-sensitized solar cell, nanoengineering technologies of metal oxide particle and film have been reviewed in terms of improving optical property, electron transport and electron life time.

제주 실시간 일사량의 기계학습 예측 기법 연구 (A Study on Prediction Techniques through Machine Learning of Real-time Solar Radiation in Jeju)

  • 이영미;배주현;박정근
    • 한국환경과학회지
    • /
    • 제26권4호
    • /
    • pp.521-527
    • /
    • 2017
  • Solar radiation forecasts are important for predicting the amount of ice on road and the potential solar energy. In an attempt to improve solar radiation predictability in Jeju, we conducted machine learning with various data mining techniques such as tree models, conditional inference tree, random forest, support vector machines and logistic regression. To validate machine learning models, the results from the simulation was compared with the solar radiation data observed over Jeju observation site. According to the model assesment, it can be seen that the solar radiation prediction using random forest is the most effective method. The error rate proposed by random forest data mining is 17%.

태양광발전원을 고려한 전력계통의 신뢰도평가에 관한 기초연구 (A Basic Study on the Probabilistic Reliability Evaluation of Power System Considering Solar/Photovoltaic Cell Generator)

  • 박정제;오량;최재석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.19-21
    • /
    • 2008
  • Renewable energy resources such as wind, wave, solar, micro hydro, tidal and biomass etc. are becoming importance stage by stage because of considering effect of the environment. Solar energy is one of the most successful sources of renewable energy for the production of electrical energy following wind energy. And, the solar/photovoltaic cell generators can not make two-state model as conventional generators, but should be modeled as multi-state model due to solar radiation random variation. The method of obtaining reliability evaluation index of solar cell generators is different from the conventional generators. This paper presents a basic study on reliability evaluation of power system considering solar cell generators with multi-states.

  • PDF

저궤도 인공위성용 태양전력 조절기의 전류 불연속 모드 해석 (DCM Analysis of Solar Array Regulator for LEO Satellites)

  • 박희성;차한주
    • 전기학회논문지
    • /
    • 제65권4호
    • /
    • pp.593-600
    • /
    • 2016
  • The solar array regulator for low earth orbit satellites controls a operating point of solar array for suppling electric power to the battery and the other units. Because the control object is reversed, the new approach for large and small signal analysis is needed despite using buck-converter for power stage. In this paper, the steady state analysis of solar array regulator is performed in continuous conduction mode and discontinuous conduction mode, and the border condition for each mode is established. Also, the small signal model of solar array regulator is established in discontinuous conduction mode. Experiments are carried on in worst condition which the solar array regulator can face with discontinuous conduction mode. The results show that the solar array regulator is in stable.

혼돈이론을 이용한 일적산 일사량의 예측 (Prediction of Daily Solar Irradiation Based on Chaos Theory)

  • 조성인;배영민;윤진일;박은우;황헌
    • Journal of Biosystems Engineering
    • /
    • 제25권2호
    • /
    • pp.123-130
    • /
    • 2000
  • A forcasting scheme for daily solar irradiance on agricultural field sis proposed by application of chaos theory to a long term observation data. It was conducted by reconstruction of phase space, attractor analysis, and Lyapunov analysis. Using the methodology , it was determined whether evolution of the five climatic data such as daily air temperature , water temperature , relative humidity, solar radiation, and wind speed are chaotic or not. The climatic data were collected for three years by an automated weather station at Hwasung-gun, Kyonggi-province. The results showed that the evolution of solar radiation was chaotic , and could be predicted. The prediction of the evolution of the solar radiation data was executed by using ' local optimal linear reconstruction ' algorithm . The RMS value of the predicting for the solar radiation evolution was 4.32 MJ/$m^2$ day. Therefore, it was feasible to predict the daily solar radiation based on the chaos theory.

  • PDF

Development of Fast Imaging Solar Spectrograph and Observation of the Solar Chromosphere

  • Park, Hyung-Min
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.80.1-80.1
    • /
    • 2011
  • It is well known that chromospheric features are fine structured, short lived, and dynamic. Spectrograph-based observation have obvious advantage of getting physical properties of solar chromosphere than filter-based one. We developed and installed Fast Imaging Solar Spectrograph (FISS) attached on New Solar Telescope in Big Bear Solar Observatory. FISS have capabilities to take data with high time, spatial and spectral resolution at two wavelengths(Ha $6563{\AA}$ and CaII $8542{\AA}$) simultaneously. After FISS installation, we observed various chromospheric features : active regions, quiet regions, filaments/prominences and so on. As one of chromospheric studies, we analyzed solar prominences and got physical parameters by using simple radiative transfer modeling. The ranges of temperature and non-thermal velocities are found to be 7500-13000K and 5-11km/s, respectively.

  • PDF

A Review on the Agri-voltaic and Fence PV System

  • Hasnain, Yousuf;Lee, Koo;Young Hyun, Cho
    • Current Photovoltaic Research
    • /
    • 제10권4호
    • /
    • pp.116-120
    • /
    • 2022
  • Solar energy is rapidly being utilized to generate power in Europe and other countries, but the environmental effect of building and operating solar farms is not fully understood. The building of a solar park demands the removal of certain vegetation and the leveling of the land. Solar energy infrastructure may involve considerable landscape change, altering soil biological processes and influencing hydrologic, carbon and vegetative dynamics. To rebuild the solar PV facilities soils, inherent plant fields might require to be re-established. Within the scope of this research, we presented an analysis of the effects that were caused by the solar farm.