• Title/Summary/Keyword: Solar Park

Search Result 2,527, Processing Time 0.028 seconds

Characteristic analysis of solar radiation and atmospheric transmissivity at Chupungryeong (추풍령의 일사량과 대기투과율의 특성 분석)

  • Park, Jin Ki;Kim, Bong Seop;Park, Jong Hwa
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.2
    • /
    • pp.149-155
    • /
    • 2014
  • The surface solar radiation is an important indicators for climate and agricultural research over the Earth system. For the climate and agricultural research, long-term meteorological data and accurate measured data are needed. The daily solar radiation from Jan. 2001 to Dec. 2010 have been employed in this study analyze atmospheric transmissivity for Chupungryeong. The corresponding daily value of atmospheric transmissivity is calculated for Chupungryeong meteorological data. In this paper, relationship analysis of daily solar radiation and atmospheric transmissivity is presented. It shows that atmospheric transmissivity over late December peaked in the 2000s, substantially decreased from the early-January, and changed little after that in summer. Reduction of solar radiation caused a reduction of more than 0.3 in atmospheric transmissivity during July to August. It was concluded that the atmospheric transmissivity could be very useful for evaluating solar radiation. Atmospheric transmissivity approach is suitable for daily-term simulation studies and useful for computing solar radiation.

Hail Impact Analysis of Photovoltaic Module using IEC Test (IEC 우박시험에 대한 태양광모듈 충돌 해석)

  • Park, Jung-Jae;Park, Chi-Yong;Ryu, Jae-Woong
    • Journal of the Korean Solar Energy Society
    • /
    • v.40 no.4
    • /
    • pp.23-33
    • /
    • 2020
  • The loss in photovoltaic power due to hailstorms has been highlighted as a major issue in the sustained growth of the PV power plant industry. This study investigates the safety of a solar module by conducting a numerical analysis of a hail test according to the IEC 61215 standard. Our study aims to elucidate the detailed behavior between the ice and solar modules and the micro-cracks forming on solar modules during hailstorms. To analyze the impact of hail, we used the ANSYS AUTODYN software to evaluate the impact characteristics on a solar module with different front glass thicknesses. The simulations show that a solar module with a glass thickness of 4.0 mm results in excellent durability against hail. The results indicate the feasibility of using simulations to analyze and predict micro-cracks on solar modules tailored to various conditions, which can be used to develop new solar modules.

Optimal Supply Scheme of Solar Hot Water Heating Systems for the Apartment Complexes (공동주택용 태양열 급탕시스템 최적공급 방안 해석연구)

  • Lee, Chul-Sung;Park, Ja-Son;Park, Jae-Wan;Shin, U-Cheul;Yoon, Jong-Ho
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.245-250
    • /
    • 2008
  • This study is on the availability of solar thermal energy in Korean high-rise apartment complex depending on the installation type of solar collectors to roof or facade of building. Firstly, solar access evaluation on the roof and the facade of apartment buildings was carried out. The total thermal load of each apartment unit and building was investigated and matched with the energy which was produced by solar thermal systems on the facade. The considered layout patterns of apartment buildings were '一type', 'alternative 一type', 'ㄱtype' and 'ㅁtype' and that was analyzed in prior studies. Extensive dynamic hourly energy simulations with the solar thermal system were Performed with the TRNSYS of SEL. We assumed that the apartment complex is composed of 9 buildings and located in Daejeon. The collectors are the heat-pip evacuated tube collectors and the number of collectors are 45 tubes We assumed that the collectors are installed on the balcony of each unit and the angle of incilnation is $90^{\circ}$. As a result, the supply amount of solar thermal systems is about 4,850,086kJ/hr and the solar fraction is about 66%. The solar fraction according to each azimuth is about 66% on the south, 62% on the south-east $30^{\circ}$ and 56% on the south-east $60^{\circ}$. So, we quantitatively got a line on the optimal azimuth for installing the solar thermal systems. The solar fraction has differences from 5% to 15% of each floor, 6th, 12th and 20th and those tendencies are same in analyzed each 4 types of the apartment complexes.

  • PDF

2016 American Solar Challenge (ASC) 참관 및 World Solar Challenge 소개

  • Park, Jun-Su
    • Bulletin of the Korea Photovoltaic Society
    • /
    • v.2 no.2
    • /
    • pp.36-43
    • /
    • 2016
  • 최근 지구온난화 및 각종 미세먼지 문제 등을 해결하기 위한 방안으로 친환경 운송수단에 대한 관심이 증폭되고 있다. 이에 따라 자동차 배기가스 규제는 더욱 강화되고 있으며, 내연기관이 아닌 새로운 동력원을 활용하는 친환경 자동차의 개발이 요구되고 있다. 이러한 요구를 만족시키며, 지속 가능한 운송수단에 대한 연구 및 개발을 자극하기 위해서 지난 30년 전부터 American Solar Challenge/ World Solar Challenge 라는 이름의 태양광 자동차 랠리가 미국 및 호주에서 진행되어 왔다. 본 기고에서는 American Solar Challenge (ASC) 참관 내용 및 World Solar Challenge에 대해 소개하며, 이를 바탕으로 향후 솔라카 개발 방향에 대해 논하고자 한다.

Perovskite solar cell (페로브스카이트 태양전지)

  • Lee, Jin-Wook;Park, Nam-Gyu
    • Vacuum Magazine
    • /
    • v.1 no.4
    • /
    • pp.10-13
    • /
    • 2014
  • Since the development of 9.7% efficient long-term stable solid state perovskite solar cell in 2012, intensive study on perovskite solar cell has been performed. As a result, power conversion efficiency (PCE) has reached 20.1%. In-dept study on perovskite light absorber enabled understanding of origin of superb photovoltaic performance of perovskite solar cell. In this article, historical evolutions of perovskite solar cell along with key physical properties enabling high PCE are presented. Several important results for development of high efficiency perovskite solar cell are introduced. Finally, in-present research issues and future direction for solving these issues are discussed.

Study on Flight Test of Small Solar-Powered UAV (소형 태양광 무인 항공기의 비행실험에 관한 연구)

  • An, Il-Young;Bae, Jae-Sung;Park, Sang-Hyuk
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.313-318
    • /
    • 2012
  • In the present study, the preliminary study on a small solar-powered RC airplane are performed for the development of a long-endurance solar-powered UAV. Solar energy enables the solar-powered UAV to fly longer or eternally. The solar-powered UAV transfers the solar energy to electric energy and this energy is used for the flight and the battery charge. To increase the flying time, the efficiency of the solar-cell power system must be increased and the required power for flight must be minimized. Hence, the system integration including solar cell and controller, the power system design, and the aerodynamic and structural designs of the UAV is very important. The present study have performed the design, manufacture, and flight test of the small solar-powered UAV for the preliminary study of the long-endurance solar-powered UAV. From this study, the system integration technology of the solar-powered UAV design is established, and the possibility and the issue points for the development of the long-endurance solar-powered UAV are discussed.

  • PDF

A Study of High-efficiency me-silicon solar cells for SiNx passivation (SiNx passivation에 따른 Solar Cell의 효율향상에 관한 연구)

  • Ko, Jae-Kyung;Lim, Dong-Gun;Kim, Do-Young;Park, Sung-Hyun;Park, Joong-Hyun;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.964-967
    • /
    • 2002
  • The effectiveness of silicon nitride SiNx surface passivation is investigated and quantified. This study adopted single-layer antireflection (SLAR) coating of SiNx for efficiency improvement of solar cell. The silicon nitride films were deposited by means of plasma enhanced chemical vapor deposition (PECVD) in planar coil reactor. The process gases used were pure ammonia and a mixture of silane and helium. The thickness and the refractive index on the films were measured by ellipsometry and chemical bonds were determined by using an FT-IR equipment. This films obtained were analyzed in term of hydrogen content, refractive index for gas flow ratio $(NH_3/SiH_4)$, and efficiency of solar cell. The polycrystalline silicon solar cells passivated by silicon nitride shows efficiency above 12.8%.

  • PDF

Window Integrated Solar Collectors (창호일체형 태양열 집열기)

  • Park, Seong-Bae;Lim, Seong-Whan;Park, Mann-Kwi
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.61-65
    • /
    • 2009
  • Window integrated solar collector is to simply install inside of the existing double glass window frame. Double glass window frame is consist of inner glass of Low-E coating and Silver coating, and outer glass of low iron reinforced glass. In order to secure natural lighting in a room, only 50% of window frame is covered with solar collectors. Solar absorption or transmission rate varies seasonally depending on sun angles. Part of inner glass where right behind of the solar plate is covered with silver coating to increase absorption rate of solar plate. The collector is made of a copper serpentine where aluminum fins are soldering. To improve the effect of insulation of inside of the window frame is recommend vacuum. As a result, we are making the 3th sample and will archieve below $F_RU_L=7.5W/m^2^{\circ}C$ that is the account of heat lossed, and above $F_R({\tau}{\alpha})=0.45$.

  • PDF

New Generation Multijunction Solar Cells for Achieving High Efficiencies

  • Lee, Sunhwa;Park, Jinjoo;Kim, Youngkuk;Kim, Sangho;Iftiquar, S.M.;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.6 no.2
    • /
    • pp.31-38
    • /
    • 2018
  • Multijunction solar cells present a practical solution towards a better photovoltaic conversion for a wider spectral range. In this review, we compare different types of multi-ijunction solar cell. First, we introduce thin film multijunction solar cell include to the thin film silicon, III-V material and chalcopyrite material. Until now the maximum reported power conversion efficiencies (PCE) of solar cells having different component sub-cells are 14.0% (thin film silicon), 46% (III-V material), 4.4% (chalcopyrite material) respectively. We then discuss the development of multijunction solar cell in which c-Si is used as bottom sub-cell while III-V material, thin film silicon, chalcopyrite material or perovskite material is used as top sub-cells.

Electrical Design of a Solar Array for LEO Satellites

  • Park, Heesung;Cha, Hanju
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.401-408
    • /
    • 2016
  • During daylight, the solar array of low earth orbit satellites harvests electrical power to operate satellites. The power conversion of the solar array is carried out by control of the operation point using the solar array regulator when the solar array faces the sunlight. Thus, the design of the solar array should comply with not only the power requirement of satellite system but also the input voltage requirement of the solar array regulator. In this paper, the design requirements of the solar array for low earth orbit satellites are defined, and the means of satisfying these requirements are described. In addition, the architecture of a multi-distributed interface is suggested to maximize the power harvested from a solar array having high temperature deviation between each panel. The power analysis in this paper shows the optimal number of multi-distributed interfaces with a converter.