• Title/Summary/Keyword: Solar PV System

Search Result 670, Processing Time 0.025 seconds

Study on the Design Methods of PV System for Apartment Buildings Application (공동주택의 태양광발전설비 적용을 위한 설계방법에 관한 연구)

  • Yi, So-Mi;Yoon, Chul;Lee, Yong-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.98-101
    • /
    • 2008
  • Nowaday, The Sustainable Development about global environment is the most important subject. In urban environment, a variety of the nature energy utilization such as the solar energy are the most efficient solution to solve this issue. One of these efficient solutions, a photovoltaic system using sunlight has been introduced to the building with an advantage such as cost-effective, safe for using and good for environment friendly in light with energy utilization. Recently, many of the apartment housings are built in domestic country. The apartment buildings have been constructed since early of 1970's. now apartment is taking over 50% out of entire housing in korea. The apartment housing applying to a photovoltaic system has been extensively studied in the foreign country but our county runs short. So, It was necessary to technical development of PV application which is suitable in Korean house culture. The objective of this study is to develop the building integrated PV application method for apartment building.

  • PDF

A Study on the Design and Power Performance of a Variable Photovoltaic Lightshelf Mounted on the Windows (창호거치 태양광발전 가변형광선반 설계 및 기초적 발전성능에 관한 연구)

  • Chung, Yu-Gun
    • KIEAE Journal
    • /
    • v.13 no.6
    • /
    • pp.105-111
    • /
    • 2013
  • This study aims to suggest the PV lightshelf and to evaluate the power performance of the photovoltaic systems easily mounted on the windows. For the study, the suggested systems consist of two parts as fixed and movable PV modules. Also, tempered glass and polycarbonate are used on the surface protection materials for solar cells of PV lightshelf. By using polycarbonate, the weight of PV lightshelf is lighter about 20%. The field tests are performed for five days by using real size models. The voltage, current and electric powers are measured as basic performances of PV lightshelf. Also, the irradiation, brightness and module surface temperature are measured as outside conditions. As results, the power performance of tempered glass PV lightshelf shows about 11(%) higher thant that of polycarbonate PV lightshelf. And the power performance shows about 5(%) higher in a horizontal system. This results could be used to develop the effective PV lightshelf in next study.

A Study on the Output and Reliability Characteristics of Ultra Barrier Film PV Module (고분자 보호 필름을 적용한 태양광 모듈의 출력 및 신뢰성에 관한 연구)

  • Lim, Jong Rok;Shin, Woo Gyun;Yoon, Hee Sang;Kim, Yong Sung;Ju, Young-Chul;Ko, Suk-Whan;Kang, Gi-Hwan;Hwang, Hye-Mi*
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.5
    • /
    • pp.1-10
    • /
    • 2019
  • Recently, the installation capacity of PV (photovoltaic) systems has been increasing not only field installation but also floating PV, farm land, BIPV/BAPV. For this reason, the new design and materials of PV module are needed. In particular, in order to apply a PV system to a building, lightweight of the PV module is essential. PV modules made of generally used texturing glass are excellent in output and reliability, but there is a limit to the weight that can be reduced. For the lightweight of the PV module, it necessary to use a film instead of a glass. However, the application of film rather than a glass may cause various problems such as decrease in photocurrent by decrease in transmittance and a increase of CTM (cell to module) loss, a degradation of the reliability, and so on. In this paper, PV modules using Ultra barrier film, which is recently a lot of interest as a substitute for a glass, its characteristic analysis and reliability test were conducted. The transmittance and UV characteristics of each material were verified, and the output of the fabricated 1 cell PV module was measured. In addition, 24 cell PV modules were fabricated at the lab-scale and its reliability tests were conducted. As a result of the experiment, the reliability characteristics of the ultra barrier film PV module were excellent, and it was confirmed that it could be used as the front material of the PV module instead of glass

A Study on the Evaluation of Power Performance according to Temperature Characteristics of Amorphous Transparent Thin-Film (비정질 박막 투과형 태양전지모듈의 온도특성에 따른 발전성능 평가 연구)

  • An, Young-Sub;Song, Jong-hwa;Lee, Sung-jin;Yoon, Jong-ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.45-48
    • /
    • 2009
  • This study evaluated the influence of temperature on the PV module surface on power output characteristics, especially for an amorphous transparent thin-film PV module which was applied to a full-scale mock-up model as building integrated photovoltaic system. The tested mock-up consisted of various slopes of PV module, facing to the south. The annual average temperature of the module installed with the slope of $30^{\circ}$ revealed $43.1^{\circ}C$, resulting in $7^{\circ}C$ higher than that measured in PV modules with the slope of $0^{\circ}$and $90^{\circ}$ did. This $30^{\circ}$ inclined PV module also showed the highest power output of 28.5W (measured at 2 PM) than other two modules having the power output of 20.4W and 14.9W in the same time for $0^{\circ}$ and $90^{\circ}$ in the slope, respectively. In case of the $30^{\circ}$ inclined PV module, it exhibited very uniform distribution of power output generation even under the higher temperature on the module surface. Consequently, the surface temperature of the PV module analyzed in this study resulted in 0.22% reduction in power output in every $1^{\circ}C$ increase of the module surface temperature.

  • PDF

Single Sensor Charging System with MPPT Capability for Standalone Streetlight Applications

  • Osman, Siti Rahimah;Rahim, Nasrudin Abd.;Selvaraj, Jeyraj;Al-Turki, Yusuf A.
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.929-938
    • /
    • 2015
  • Maximum power point tracking (MPPT) and battery charging control are two important functions for a solar battery charger. The former improves utilization of the available solar energy, while the latter ensures a prolonged battery life. Nevertheless, complete implementation of both functions can be complex and costly, especially for low voltage application such as standalone street lamps. In this paper, the operation of a solar battery charger for standalone street light systems is investigated. Using only one voltage sensor, the solar charger is able to operate in both MPPT and constant voltage (CV) charging mode, hence providing high performance at a low cost. Using a lab prototype and a solar simulator, the operation of the charger system is demonstrated and its performance under varying irradiance is validated.

A Study on Performance of Flat Water-type PVT Modules According to Absorber Type (흡열판의 종류에 따른 Unglazed PVT 모듈의 성능 실험 분석)

  • Chun, Jin-Aha;Jeong, Seon-Ok;Kim, Jin-Hee;Kim, Jun-Tae;Cho, In-Soo;Nam, Seung-Baeg
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.93-98
    • /
    • 2011
  • A photovoltaic/thermal(PVT)collector produces both thermal energy and electricity simultaneously. The heat from PV modules should be removed for better electrical performance, and can be converted into useful thermal energy. A PVT module is a combination of PV module with a solar thermal collector which forms one device that converts solar radiation into electricity and heat. In general, there are two different types of PVT module: glazed PVT module and unglazed PVT module. On the other hand, two types of the PVT module can be distinguished according to absorber on PV module rear side: the sheet-and-tube absorber PVT module and the fully wetted absorber PVT module. The absorber collector plays an important function in PVT system. It cools down the PV module, while collecting the thermal energy produced in the form of hot water. The aim of this study is to compare the electrical and thermal performance of two different PVT collectors, one with the rectangular tube and the other with fully wetted absorber PVT collectors. For this paper, the PVT collectors with two different types of thermal absorber were made, and both the thermal and electrical performance of them were measured in outdoor, and the results were compared. The experimental results were analyzed that the thermal efficiency of the fully wetted absorber PVT collector is about 8.7% higher than the sheet-and-tube absorber PVT collector, and for the electrical efficiency, the fully wetted absorber PVT collector had about 7% higher than the rectangular tube absorber.

  • PDF

A study on the operating method for Photovoltaic system through the SOC measurement of batteies (Battery SOC(State of Charge)측정을 통한 태양광발전 시스템 운영 방안 연구)

  • Song, Jung-Yong;Seo, Yu-Jin;Kwon, Oh-Sang;Jeoung, Kwan-Chul;Huh, Chang-Su
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.2
    • /
    • pp.1-7
    • /
    • 2004
  • In this paper, the new improved method for photovoltaic system was studied available for a lighting load by measuring the state of charge of lead-acid batteries. Photovoltaic systems has been evaluated as one of the most new and renewable energy and especially, the Stand-Alone Photovoltaic system has been used to a street light, a road sign light, an air caution light, an emergency call. Many Stand-Alone PV system are installed by a group. Although the pre-installation cost of PV system is high and it has not been operated due to the absence of optimal management standards. In this paper, it is proposed a new operating method by the measurement of lead-acid battery's SOC with a Ah balancing.

The Study on A New PV Tracking System Including the Load Dispersion (하중 분산형 새로운 태양광 추적 장치에 관한 연구)

  • Lee, Sang-Hun;Jung, Tae-Uk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.508-519
    • /
    • 2006
  • In solar power system, the height and azimuth of the sun are important parameters which control generated power magnitude. The tracking method that controls the daily generation magnitude according to latitude and longitude using the two axles is often used in the existing sunlight tracking system today. In this two-axle PV track control system, the self-load is concentrated on one FRAME. It is influenced of the regular load, snow load and the wind load, etc. It is difficult to set up the system in the conventional building. This research is a development about the small-scale economy track device of independent load-dispersing solar generation system. The position tracking algorithm is through the new coordinates transformation calculating the height and azimuth of the sun.

Development of Stand-Alone Underground Water Pumping System using Photovoltaics System (태양광발전을 이용한 독립형 지하수 양수 시스템 개발)

  • Lee, Seung-Hun;Hwang, Jung-Hoon;Cho, Woon-Sik;Kim, Man-Il;Lee, Joon-Gee;Park, Moon-Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.69-72
    • /
    • 2009
  • In this paper, the Stand-alone underground water pumping system was developed that is consist of Submersible Pump (AC type), Photovoltaic Array and Power converter by the application of solar energy. And also wish to introduce system that is possible to supply of drinking water or water for agriculture using solar energy at desertification area or a Off-grid area, interior etc. and operation test results. This system can use in deep tube well of 200m range with common Submersible Pump and maximized to the quantity of pumping through M.P.P.T control. Also system availability raised through apply various driving mode.

  • PDF

A Modified Perturb and Observe Sliding Mode Maximum Power Point Tracking Method for Photovoltaic System uUnder Partially Shaded Conditions

  • Hahm, Jehun;Kim, Euntai;Lee, Heejin;Yoon, Changyong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.281-292
    • /
    • 2016
  • The proposed scheme is based on the modified perturb and observe (P&O) algorithm combined with the sliding mode technique. A modified P&O algorithm based sliding mode controller is developed to study the effects of partial shade, temperature, and insolation on the performance of maximum power point tracking (MPPT) used in photovoltaic (PV) systems. Under partially shaded conditions and temperature, the energy conversion efficiency of a PV array is very low, leading to significant power losses. Consequently, increasing efficiency by means of MPPT is particularly important. Conventional techniques are easy to implement but produce oscillations at MPP. The proposed method is applied to a model to simulate the performance of the PV system for solar energy usage, which is compared to the conventional methods under non-uniform insolation improving the PV system utilization efficiency and allowing optimization of the system performance. The modified perturb and observe sliding mode controller successfully overcomes the issues presented by non-uniform conditions and tracks the global MPP. Compared to MPPT techniques, the proposed technique is more efficient; it produces less oscillation at MPP in the steady state, and provides more precise tracking.