• Title/Summary/Keyword: Solar Module Temperature

Search Result 233, Processing Time 0.025 seconds

Study on variation of electrical characteristics of vertical PV module according to the change of irradiance and temperature (수직형 태양광발전모듈의 계절별 일사획득 및 온도변화에 따른 출력특성 변화에 관한 연구)

  • Park, Kyung-Eun;Kang, Gi-Hwan;Kim, Hyun-Il;Yu, Gwon-Jong;Kim, Jun-Tae
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.57-62
    • /
    • 2008
  • Building Integrated PV(BIPV) is one of the best fascinating PV application technologies. To apply PV module in building, various factors should be reflected such as installation position, shading, temperature, and so on. Especially the installation condition should be considered, for the generation performance of PV module is changed or the generation loss is appeared according to installation position, method, and etc. This study investigates variation of electrical characteristics of a PV module according to the change of irradiance and temperature. From this experimental study, we confirmed that the irradiance, the temperature variation and the generation performance of a PV module were appeared differently according seasonal variation. Actually the PV module installed in building facade showed high-generation performance in winter.

  • PDF

Output characteristics of different type of si pv modules based on working condition (결정질 실리콘 태양전지 모듈의 종류에 따른 동작 조건별 특성 비교에 관한 연구)

  • Park, Chi-Hong;Kang, Gi-Hwan;Ahn, Hyung-Keun;Yu, Gwon-Jong;Han, Deuk-Young
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.252-256
    • /
    • 2008
  • Photovoltaic (PV) modules output changes noticeable with variations in temperature and irradiance. In general it is has been shown that a $1^{\circ}C$ increase in temperature results in a 0.5% drop in output. In this paper, seven PV module types are analyzed for variation in temperature and irradiance, and the resulting output characteristics examined. The 7 modules types utilized are as follows; 3 poly crystalline modules, 2 single crystalline modules, 1 back contact single crystalline module and 1 HIT module. 3 groups of experiments are then conducted on the modules; tests with varying irradiance values, tests with module temperature varying under $25^{\circ}C$ and tests with module temperature varying over $25^{\circ}C$. The experiments results show that as temperature rises the follow is observed; Pmax decreases by 0.6%, Voc decreases by about 0.4%, and Isc increasing by between 0.03%${\sim}$0.08%. In addition, an irradiance decrease of 100 w/m2 translates into a 10% drop in Pmax.

  • PDF

Output Power Characteristics According to Temperature for Photovoltaic Systems (태양광 발전시스템의 온도에 따른 출력전력 특성)

  • Park, Chul-Woong;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2009.04a
    • /
    • pp.186-188
    • /
    • 2009
  • In this thesis, output voltage, current and power of solar module were classified by irradiation and module temperature from data of overall operating characteristics collected for one year in order to manage efficient photovoltaic generation system and deliver maximum power. In addition, from these data, correlations between irradiation, module temperature of photovoltaic cell and amount of power given by photovoltaic cell was quantitatively examined to deduce optimization of the design and construction of photovoltaic generation system. The results of this thesis can be summarized as follows. As output power characteristics according to a temperature range of 10$\sim$50[], output power was increased with an increase in temperature. Since output power increases with temperature increase, the result corresponds well to the related equation on temperature and output power.

  • PDF

Accuracy Enhancement of Output Measurement by Silicon Crystalline Photo Voltaic (PV) Module Production Process Optimization (Crystalline Silicon Photo Voltaic (PV) Module의 양산 공정 최적화에 의한 Module 출력 측정 정확성 향상)

  • Lee, Jongpil;Lee, Kyu-Mann
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.3
    • /
    • pp.10-16
    • /
    • 2018
  • In silicon crystalline PV (Photo Voltaic) industry, PV module or panel electric power is directly related to the companies' profit. Thus, many PV companies have invested and focused on R&D activities to get the higher module power. The main BOM (Bills of Material) on the module consists of PV solar cell, ribbon, EVA (Ethylene-Vinyl Acetate copolymer), glass and back sheet. Based on consistent research efforts on enhancing module power using BOM, there have been increase of around 5 watt per module every year as results. However, there are lack of studies related to enhancing accuracy of measurement. In this study, the enhancing on the metrology is investigated and the improvement shows actually contribution to company's profit. Especially, the measurement issues related to heat and to quasi state of bandgap diagram by EL(Electro Luminescence) are described in this study.

I-V Characteristics According to Temperature for Photovoltaic Systems (태양광 발전시스템의 온도에 따른 전압-전류 특성)

  • Hwang, Jun-Won;Lee, Ying;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2009.04a
    • /
    • pp.183-185
    • /
    • 2009
  • In this thesis, output voltage, current and power of solar module were classified by irradiation and module temperature from data of overall operating characteristics collected for one year in order to manage efficient photovoltaic generation system and deliver maximum power. In addition, from these data, correlations between irradiation, module temperature of photovoltaic cell and amount of power given by photovoltaic cell was quantitatively examined to deduce optimization of the design and construction of photovoltaic generation system. The results of this thesis can be summarized as follows. As I-Y characteristics according to a temperature range of 10$\sim$50[], the area of I-V characteristics were increased with an increase in temperature. Since this area corresponds to the power, output power is thought to have increased with temperature.

  • PDF

Analysis of Thermal and Optical Characteristic of Semi-transparent Module according to Various Types of the Backside Glass (후면 유리 종류에 따른 투과형 태양광발전모듈의 열 및 광 특성 분석)

  • Park, Kyung-Eun;Kang, Gi-Hwan;Kim, Hyun-Il;Kim, Kyung-Su;Yu, Gwon-Jong;Kim, Jun-Tae
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.263-268
    • /
    • 2008
  • Building Integrated PV(BIPV) is one of the best fascinating PV application technologies. To apply PV module in building, various factors should be reflected such as installation position, shading, temperature, and so on. Especially a temperature should be considered, for it affects both electrical efficiency of a PV module and heating/cooling load in a building. This study investigates a semitransparent PV module that is designed as finished material for windows. Therefore it needs to considerate about the optical characteristics of the transparent module. It reports the effect of thermal and optical characteristics of the PV module on generation performance. The study was performed by measuring sun spectrum and luminance through the PV modules and by monitoring the temperature and experiment. The results showed that 1 degree temperature rise reduced about 0.48% of output power.

  • PDF

Evaluation on Calculation Algorithms for Polycrystalline Silicon PV Module Surface Temperatures by Varying External Factors during the Summer Period (다결정 실리콘 PV모듈의 하절기 표면온도 예측을 위한 알고리즘 검토 및 외부인자별 영향 평가)

  • Jung, Dong-Eun;Yeom, Gyuhwan;Lee, Chanuk;Do, Sung-Lok
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.8
    • /
    • pp.177-184
    • /
    • 2019
  • Recently, electric power usages and peak loads from buildings are increasing due to higher outdoor air temperatures and/or abnormal climate during the summer period. As one of the eco-friendly measures, a renewable energy system has been received much attention. Particularly, interest on a photovoltaic (PV) system using solar energy has been rapidly increasing in a building sector due to its broad applicability. In using the PV system, one of important factors is the PV efficiency. The normal PV efficiency is determined based on the STC(Standard Test Condition) and the NOCT(Nominal Operating Cell Temperature) performance test. However, the actual PV efficiency is affected by the temperature change at the module surface. Especially, higher module temperatures generally reduce the PV efficiency, and it leads to less power generation from the PV system. Therefore, the analysis of the relation between the module temperature and PV efficiency is required to evaluate the PV performance during the summer period. This study investigates existing algorithms for calculating module surface temperatures and analyzes resultant errors with the algorithms by comparing the measured module temperatures.

Low Temperature Nanopowder Processing for Flexible CIGS Solar Cells (플렉시블 CIGS 태양전지 제조를 위한 저온 나노입자공정)

  • Park, Chinho;Farva, Umme;Krishnan, Rangarajan;Park, Jun Young;Anderson, Timothy J.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.61.1-61.1
    • /
    • 2010
  • $CuIn_{1-x}-GaxSe_2$ based materials with direct bandgap and high absorption coefficient are promising materials for high efficiency hetero-junction solar cells. CIGS champion cell efficiency(19.9%, AM1.5G) is very close to polycrystalline silicon(20.3%, AM1.5G). A reduction in the price of CIGS module is required for competing with well matured silicon technology. Price reduction can be achieved by decreasing the manufacturing cost and by increasing module efficiency. Manufacturing cost is mostly dominated by capital cost. Device properties of CIGS are strongly dependent on doping, defect chemistry and structure which in turn are dependent on growth conditions. The complex chemistry of CIGS is not fully understood to optimize and scale processes. Control of the absorber grain size, structural quality, texture, composition profile in the growth direction is important to achieving reliable device performance. In the present work, CIS nanoparticles were prepared by a simple wet chemical synthesis method and their structural and optical properties were investigated. XRD patterns of as-grown nanopowders indicate CIS(Cubic), $CuSe_2$(orthorhombic) and excess selenium. Further, as-grown and annealed nanopowders were characterized by HRTEM and ICP-OES. Grain growth of the nanopowders was followed as a function of temperature using HT-XRD with overpressure of selenium. It was found that significant grain growth occurred between $300-400^{\circ}C$ accompanied by formation of ${\beta}-Cu_{2-x}Se$ at high temperature($500^{\circ}C$) consistent with Cu-Se phase diagram. The result suggests that grain growth follows VLS mechanism which would be very useful for low temperature, high quality and economic processing of CIGS based solar cells.

  • PDF

Prediction and Analysis of Photovoltaic Modules's Output using MATLAB (MATLAB을 이용한 태양광 모듈의 출력 예측 및 해석)

  • Heo, Yun-Seok;Kim, Jae-Gyu;Kim, Ji-Man;Kwon, Bo-Min;Song, Han-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.8
    • /
    • pp.2963-2967
    • /
    • 2010
  • In this paper, we have predicted and analyzed the MSX 60 photovoltaic module's output according to the temperature and solar radiation conditions by MATLAB program. 2 and 3-dimensional I-V curves of the PV module considered temperature, series resistance and solar radiation variation. are shown. Also, calculated PV's electrical parameters are Isc = 3.8 A, Voc = 21 V, Pmax = 60 W. Compared with the actual photovoltaic module's data, these simulated results agreed well with within the manufacturer's maximum error range 3%.

Experimental Study on the Thermal Effect of BIPV Modules Depending on the Ventilation Type of PV Module Backside (후면 환기조건에 따른 건물외피용 태양광발전(BIPV) 모듈의 열적 영향에 관한 실험연구)

  • Yoon, Jong-Ho;Kim, Jae-Ung
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.1
    • /
    • pp.81-89
    • /
    • 2006
  • Building integrated photovoltaic (BIPV) system operates as a multi-functional building construction material. They not only produce electricity, but also are building integral components such as facade, roof, window and shading device. On the other hands lots of architectural considerations should be reflected such as Installation position, shading, temperature effect and so on. As PV modules function like building envelope in BIPV, combined thermal and PV performance should be simultaneously evaluated This study is on the combined thermal and PV performance evaluation of BIPV modules. The purpose of this study is to investigate a temperature effect of PV module depending on the ventilation type of PV module backside. Test cell experiment was performed to identify the thermal and power effect of PV modules. Measurement results on the correlation of temperature and power generation were obtained. Those results can be utilized for the development of optimal BIPV installation details in the very early design stage.