• Title/Summary/Keyword: Solar Heat Flux

Search Result 138, Processing Time 0.023 seconds

A Study on the Start-up of the Water/Steam Receiver for Solar Power Tower (타워형 태양열 흡수기의 시동특성에 관한 연구)

  • Seo, Ho-Young;Kim, Jong-Kyu;Kang, Yong-Heack
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.157-160
    • /
    • 2008
  • Solar receiver in the solar power tower system has a similarity to a boiler of the thermal power plant in many aspects. However Boiler is operated long time without stopping while solar receiver repeats start and stop every day. The objective of this study is to investigate start-up characteristics of solar receiver. The experimental device was constructed in a bench scale. Basic experimental condition of water/steam was set by 25 bar and $223^{\circ}C$. Initially, the heat was added into risers only, then another experiment with input into drum additionally was done. When the heat flux was valid only risers, it took about 300 minutes until the water temperature in drum reached $223^{\circ}C$. Water temperature of drum was increased by $44^{\circ}C$/hr with 91.14 g/s of water circulation. With additional heat input into drum, 200 minutes was required to reach $223^{\circ}C$. In this case temperature was increased $66^{\circ}C$/hr with 96.5 g/s of water circulation.

  • PDF

A Study on Design and Performance of a Heat pipe for the application to Solar collector (태양열 집열기용 열파이프의 구조와 작동 특성에 관한 연구)

  • 임광빈;김철주;박이동;황영규;강환국
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1993.05a
    • /
    • pp.70-78
    • /
    • 1993
  • Heat pipes, applied to flat plate solar collectors, have a long and slender configuration with relatively low heat flux on the evaporator. Such a heat pipe has a tendency to build-up a liquid pool at the lower half of evaporator zone, and at this pool occurs such complicated phenomena of evaporation and fluid dynamics as superheat, sudden generation of bubble, its likely explosive growth process and flooding etc. In the present study, we tried to solve those problems by means of adjusting the two principle design parameters, liquid fill charge and wick length, using 4 heat pipes and 3 thermosyphons, with different values of parameter respectively. The corresponding results can be summarized as followings, - The thermal conductance of heat pipes was largely improved by el eliminating wick from adiabatic and condenser zone. - But on evaporator zone wick is inevitable to reduce behavior of the build -up of liquid pool , where arise diverse internal complex phenomena. - The liquid fill charge should have to be increased by 10∼20% more than the quantity to saturate the wick.

  • PDF

Operational Water Temperature Forecast for the Nakdong River Basin Using HSPF Watershed Model (HSPF 유역모델을 이용한 낙동강유역 실시간 수온 예측)

  • Shin, Chang Min;Na, Eun Hye;Kim, Duck Gil;Kim, Kyunghyun
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.6
    • /
    • pp.673-682
    • /
    • 2014
  • A watershed model was constructed using Hydrological Simulation Program Fortran to predict the water temperature at major tributaries of Nakdong River basin, Korea. Water temperature is one of the most fundamental indices used to determine the nature of an aquatic environment. Most processes of an aquatic environment such as saturation level of dissolved oxygen, the decay rate of organic matter, the growth rate of phytoplankton and zooplankton are affected by temperature. The heat flux to major reservoirs and tributaries was analyzed to simulate water temperature accurately using HSPF model. The annual mean heat flux of solar radiation was estimated to $150{\sim}165W/m^2$, longwave radiation to $-48{\sim}-113W/m^2$, evaporative heat loss to $-39{\sim}-115W/m^2$, sensible heat flux to $-13{\sim}-22W/m^2$, precipitation heat flux to $2{\sim}4W/m^2$, bed heat flux to $-24{\sim}22W/m^2$ respectively. The model was calibrated at major reservoir and tributaries for a three-year period (2008 to 2010). The deviation values (Dv) of water temperature ranged from -6.0 to 3.7%, Nash-Sutcliffe efficiency(NSE) of 0.88 to 0.95, root mean square error(RMSE) of $1.7{\sim}2.8^{\circ}C$. The operational water temperature forecasting results presented in this study were in good agreement with measured data and had a similar accuracy with model calibration results.

Numerical study on Comparison of Self-Pressurization Behavior of Liquid Nitrogen Cryostat for Umbilical Cord Blood Storage System Design

  • Mahfud, M.I.;Phil, K.E.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.409-414
    • /
    • 2009
  • Since cryogens are stored at very low temperatures, the cryogenic storage systems are quite sensitive to heat leaks. Even though the vessel operated under sealed condition with vacuum insulation and reflective coatings are used, the heat leakage into the vessel is still unavoidable. Therefore, this paper concerns with numerical study of self-pressurization used to analysis the optimum design with the variation volume fraction, effect of heat flux and storage pressure of liquid nitrogen. The result shows that as the volume fraction increases, the pressure rise reduces and the relatively at atmosphere pressure is better than the higher one. In addition, higher heat flux leads the pressure rise increases faster than low one. The additional of heat pipe system to reduce the pressure rise rate also has been done. By this comparison, the optimum design for storage umbilical cord blood can be selected.

  • PDF

A Study on the Thermal Characteristics of Vacuum Membrane Distillation Module (VMD 모듈의 열성능 특성 연구)

  • Joo, Hong-Jin;Yang, Yong-Woo;Kwak, Hee-Youl
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.5
    • /
    • pp.23-31
    • /
    • 2014
  • This study was accomplished to get the foundation design data of VMD(Vacuum Membrane Distillation) system for Solar Thermal VMD plant. VMD experiment was designed to evaluate thermal performance of VMD using PVDF(polyvinylidene fluoride) hollow fiber hydrophobic membranes. The total membrane surface area in a VMD module is $5.3m^2$. Experimental equipments to evaluate VMD system consists of various parts such as VMD module, heat exchanger, heater, storage tank, pump, flow meter, micro filter. The experimental conditions to evaluate VMD module were salt concentration, temperature, flow rate of feed sea water. Salt concentration of feed water were used by aqueous NaCl solutions of 25g/l, 35g/l and 45g/l concentration. As a result, increase in permeate flux of VMD module is due to the increasing feed water temperature and feed water flow rate. Also, decrease in permeate flux of VMD module is due to increasing salinity of feed water. VMD module required about 590 kWh/day of heating energy to produce $1m^3/day$ of fresh water.

A Fundamental Study of BIPV System Functioned as Solar Collector for Building Application (건물 적용을 위한 태양열 집열기 기능을 갖는 BIPV 시스템의 기초적 연구)

  • Min, Sung-Hye;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.1
    • /
    • pp.91-98
    • /
    • 2007
  • Perimeter zone is one of the weakest area in buildings and it makes an increase of heating and cooling loads, in addition to condensation or discomfort with cold-draft to residents in winter. Because of this, it needs to be reinforced by active systems. However, they use fossil fuel, and ultimately greenhouse effect is urged. Thus, we proposed BIPV system functioned as solar collector which can substitute active system. As an fundamental stage, heat balance equation in steady-state by Fortran was used not only, in winter for pre-heating effect and electric power capacity during the day, but also in summer, for the latter during the day and sky radiation effect during the night. Especially, we should have considered shading on PV by IES Suncast, since even a little bit of it makes the efficiency too low for the PV modules to work. As a result, in summer day, the PV panel should be tiled in 70 degrees to gain the most electric power. Moreover, we could verify that this model makes higher temperature and heat flux under 0.02 m/s. On the other hand, the PV had the high efficiency with high velocity because of cooling effect behind the PV. Therefore, we should regard the air current distribution later on.

Measurement and Compensation of Heliostat Sun Tracking Error Using BCS (Beam Characterization System) (광특성분석시스템(BCS)을 이용한 헬리오스타트 태양추적오차의 측정 및 보정)

  • Hong, Yoo-Pyo;Park, Young-Chil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.5
    • /
    • pp.502-508
    • /
    • 2012
  • Heliostat, as a concentrator to reflect the incident solar energy to the receiver, is the most important system in the tower-type solar thermal power plant since it determines the efficiency and ultimately the overall performance of solar thermal power plant. Thus, a good sun tracking ability as well as a good optical property of it are required. Heliostat sun tracking system uses usually an open loop control system. Thus the sun tracking error caused by heliostat's geometrical error, optical error and computational error cannot be compensated. Recently use of sun tracking error model to compensate the sun tracking error has been proposed, where the error model is obtained from the measured ones. This work is a development of heliostat sun tracking error measurement and compensation method using BCS (Beam Characterization System). We first developed an image processing system to measure the sun tracking error optically. Then the measured error is modeled in linear polynomial form and neural network form trained by the extended Kalman filter respectively. Finally error models are used to compensate the sun tracking error. We also developed the necessary image processing algorithms so that the heliostat optical properties such as maximum heat flux intensity, heat flux distribution and total reflected heat energy could be analyzed. Experimentally obtained data shows that the heliostat sun tracking accuracy could be dramatically improved using either linear polynomial type error model or neural network type error model. Neural network type error model is somewhat better in improving the sun tracking performance. Nevertheless, since the difference between two error models in compensation of sun tracking error is small, a linear error model is preferred in actual implementation due to its simplicity.

Numerical Study on Heat Transfer Characteristics in Impinging Air Jet System (충돌분류시스템의 열전달 특성에 관한 수치적 연구)

  • Kum, Sung-Min;Kim, Dong-Choon
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.4
    • /
    • pp.55-61
    • /
    • 2003
  • Heat transfer characteristics for an air jet vertically impinging on a flat plate with a set of hybrid rods was investigated numerically using the RNG k-$\varepsilon$turbulent model. A commercial finite-volume code FLUENT is used. The rods had cross sections of half circular and rectangular shapes. The heating surface was heated with a constant heat flux value of $1020W/m^2$. Parameters investigated were the jet Reynolds number, nozzle -to-plate spacing, the rod pitch and rod-to-plate clearance. The local and average Nusselt number were found to be dependent on the rod pitch and the clearance because installing rods disturbed the flow. Higher convective heat transfer rate occurred in the whole plate as well as in the wall jet region.

A Study on Mixed Convection in Parallel Flat Plate with Heated Rectangular Block Arrays (발열체가 있는 평행평판공간내의 대류열전달에 관한 수치해석)

  • Jung, B.Y.;Lee, C.M.;Yim, C.S.
    • Solar Energy
    • /
    • v.6 no.2
    • /
    • pp.62-69
    • /
    • 1986
  • An analysis is made of the fully developed laminar flow and heat transfer in a parallel flat plate with heated rectangular block arrays to investigated the influence of bouyancy force. The shrouds is considered as adiabatic, while the heated block surface transmit a uniform rate of heat flux per unit axial length. The governing equations for velocity and temperature are solved by SIMPLE(Semi-Implicit Method Pressure Linked Equation) algorithm. Detailed velocity and temperature fields and overall heat transfer on wide range of Rayleigh number and various aspect ratios of heated rectangular blocks are computed. The result show that bouyancy leads to a significient enhancement in heat transfer along with a smaller increase in pressure drop, with the great enhancement found when the aspect ratio is 3.0.

  • PDF

An Experimental Study on Miniature Two-phase Closed Thermosyphons With Inserts (철사를 삽입한 초소형 열사이폰에 관한 기초 실험 연구)

  • Lee, Y.S.;Chun, W.G.;Lee, Y.P.
    • Solar Energy
    • /
    • v.15 no.2
    • /
    • pp.39-46
    • /
    • 1995
  • Reported is a visual and quantitative experimental study on the two-phase flow and heat transfer characteristics of miniature two-phase closed thermosyphons with wire inserts. The visual study clearly demonstrated the two-phase flow involved in such thermosyphons. In the quantitative study, the effects on the heat transfer rate of the insert wire diameter, the ratio of heated-length to cooled length and the applied heat flux were investigated.

  • PDF