• Title/Summary/Keyword: Solar Cell System

Search Result 787, Processing Time 0.029 seconds

Fabrication of a Cu2ZnSn(S,Se)4 thin film solar cell with 9.24% efficiency from a sputtered metallic precursor by using S and Se pellets

  • Gang, Myeong-Gil;Hong, Chang-U;Yun, Jae-Ho;Gwak, Ji-Hye;An, Seung-Gyu;Mun, Jong-Ha;Kim, Jin-Hyeok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.86.2-86.2
    • /
    • 2015
  • Cu2ZnSn(S,Se)4 thin film solar cells have been fabricated using sputtered Cu/Sn/Zn metallic precursors on Mo coated sodalime glass substrate without using a toxic H2Se and H2S atmosphere. Cu/Sn/Zn metallic precursors with various thicknesses were prepared using DC magnetron sputtering process at room temperature. As-deposited metallic precursors were sulfo-selenized inside a graphite box containing S and Se pellets using rapid thermal processing furnace at various sulfur to selenium (S/Se) compositional ratio. Thin film solar cells were fabricated after sulfo-selenization process using a 65 nm CdS buffer, a 40 nm intrinsic ZnO, a 400 nm Al doped ZnO, and Al/Ni top metal contact. Effects of sulfur to selenium (S/Se) compositional ratio on the microstructure, crystallinity, electrical properties, and cell efficiencies have been studied using X-ray diffraction, Raman spectroscopy, field emission scanning electron microscope, I-V measurement system, solar simulator, quantum efficiency measurement system, and time resolved photoluminescence spectrometer. Our fabricated Cu2ZnSn(S,Se)4 thin film solar cell shows the best conversion efficiency of 9.24 % (Voc : 454.6 mV, Jsc : 32.14 mA/cm2, FF : 63.29 %, and active area : 0.433 cm2), which is the highest efficiency among Cu2ZnSn(S,Se)4 thin film solar cells prepared using sputter deposited metallic precursors and without using a toxic H2Se gas. Details about other experimental results will be discussed during the presentation.

  • PDF

A Solar Energy Harvesting Circuit with Low-Cost MPPT Control for Low Duty-Cycled Sensor Nodes. (낮은 듀티 동작의 센서 노드를 위한 저비용 MPPT 제어기능을 갖는 빛에너지 하베스팅 회로)

  • Yoon, Eun-Jung;Yang, Min-Jae;Yu, Chong-Gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.397-400
    • /
    • 2015
  • In this paper a solar energy harvesting system with low-cost MPPT control for low duty-cycled sensor nodes is proposed. The targeted applications are environment, structure monitoring sensor nodes that are not required successively to operate, and MPPT(Maximum Power point Tracking) control using simple circuits is low-cost differently than existing MPPT control. The proposed MPPT control is implemented using linear relationship between the open-circuit voltage of a solar cell. The designed MPPT circuit traces the maximum power point by sampling periodically the open circuit voltage of the solar cell and delivers the maximum available power to the load. The proposed circuit is designed in 0.35um CMOS process. The designed chip area is $975um{\times}1025um$ including pads. Measured results show that the designed system can track the MPP voltage by sampling periodically the open circuit voltage of solar cell.

  • PDF

A Study on the Performance Analysis for the CPV Module Applying Sphericalness Lens (구형렌즈를 적용한 CPV 모듈 발전성능 분석에 관한 연구)

  • Jeong, Byeong-Ho;Kim, Nam-Oh;Lee, Kang-Yoen
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.3
    • /
    • pp.293-297
    • /
    • 2010
  • Next generation concentrating photovoltaic technologies could have a large-scale impact on world electricity production once they will become economically attractive and grid parity will be reached. Multi-junction solar cells will be characterised by a high value of the cell economical performance index if the cells were able to operate at high concentration level. Concentrating the sunlight by optical devices like lenses or mirrors reduces the area of expensive solar cells or modules, and, moreover, increases their efficiency. Accurate and reliable tracking is an important issue to maintain high the CPV system output power. Further, for high concentration CPV systems, the actual tracker cost is about 20% of the total CPV system cost. In this paper high-concentration is defined as systems using concentration ratios well above 100 times the one sun intensity and trackerlss CPV system studied. Using sphericalness lens and parallel MJ cell connection method were suggested and achieved experiment on a clear day in summer. Development of these high performance multi-junction CPV module promises to accelerate growth in photovoltaic power generation.

LED Display System using Solar Cell (태양전지를 이용한 LED 전광시스템)

  • Sin, S.H.;Lee, Y.J.;Ko, G.E.;Choi, Y.H.;Jeon, D.J.;Cho, G.B.
    • Proceedings of the KIEE Conference
    • /
    • 2008.04c
    • /
    • pp.251-253
    • /
    • 2008
  • This research combines LED display System with a module of solar cell which transforms solar energy to electrical energy. In order to simplify the installation and the movement of LED Display System, the system removed the conventional power distribution is developed, and that improves the advertising effect of LED Display System.

  • PDF

Fabrication of an Automatic Color-Tuned System with Flexibility Using a Dry Deposited Photoanode

  • Choi, Dahyun;Park, Yoonchan;Lee, Minji;Kim, Kwangmin;Choi, Jung-Oh;Lee, Caroline Sunyong
    • International Journal of Precision Engineering and Manufacturing-Green Technology
    • /
    • v.5 no.5
    • /
    • pp.643-650
    • /
    • 2018
  • A self-powered electrochromic device was fabricated on an indium tin oxide-polyethylene naphthalate flexible substrate using a dye-sensitized solar cell (DSSC) as a self-harvesting source; the electrochromic device was naturally bleached and operated under outdoor light conditions. The color of the organic electrochromic polymer, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate, was shifted from pale blue to deep blue with an antimony tin oxide film as a charge-balanced material. Electrochromic performance was enhanced by secondary doping using dimethyl sulfoxide. As a result, the device showed stable switching behavior with a high transmittance change difference of 40% at its specific wavelength of 630 nm for 6 hrs. To improve the efficiency of the solar cell, 1.0 wt.% of Ag NWs in the photoanode was applied to the $TiO_2$ photoanode. It resulted in an efficiency of 3.3%, leading to an operating voltage of 0.7 V under xenon lamp conditions. As a result, we built a standalone self-harvesting electrochromic system with the performance of transmittance switching of 29% at 630 nm, by connecting with two solar cells in a device. Thus, a self-harvesting and flexible device was fabricated to operate automatically under the irradiated/dark conditions.

Modeling of Solar-Powered Hydrogen Production System using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 수소제조용 태양광 발전 시스템의 모델링)

  • Lee Dong-Han;Park Minwon;Yu In-Keun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.2
    • /
    • pp.116-121
    • /
    • 2006
  • This paper presents an effective modeling and simulation scheme of solar-powered hydrogen production system (PV-SPE: Photovoltaic Solid Polymer Electrolyte). Existing Hydrogen production technologies can produce vast amounts of hydrogen from hydrocarbons but emit large amounts of carbon dioxide (CO2) into the atmosphere. Advanced hydrogen production methods need development. Renewable technologies such as solar and wind need further development for hydrogen production to be more cost-competitive from other resources. In this paper, authors have focused on a renewable technology to move one step further toward commercial readiness of solar-powered hydrogen production system. Software (PSCAD/EMTDC) based model of PV-SPE system is studied for an effective simulation of hydrogen production system. Using the simulation results, an actual PV-SPE system is implemented to verify the simulation results by comparing them with actual values obtained from the data acquisition system.

A Study on the Solar Radiation Analysis for Components and Classified Wavelength in Korea (국내 태양광자원의 성분 및 파장별 분석에 관한 연구)

  • Jo, Dok-Ki;Yun, Chang-Yeol;Kim, Kwang-Deuk;Kang, Young-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.2
    • /
    • pp.35-41
    • /
    • 2012
  • Knowledge of the solar radiation components and classified wavelength data are essential for modeling many solar photovoltaic systems. This is particularly the case for applications that concentrate the incident energy to attain high photo-dynamic efficiency achievable only at the higher intensities. In order to estimate the performance of concentrating PV systems, it is necessary to know the intensity of the beam radiation, as only this components can be concentrated, and The new PV cell can generate electricity from ultraviolet and infrared light as well as visible light. The Korea Institute of Energy Research(KIER) has began collecting solar radiation components data since January, 1988, and solar radiation classified wavelength data since November, 2008. KIER's solar radiation components and classified wavelength data will be extensively used by concentrating PV system users or designers as well as by research institutes. It is essential to utilize the solar radiation data as application and development of solar energy system increase. Consider able efforts have been made constructing a standard data base system from measure data.

Incident Angle Dependence of Quantum Efficiency in c-Si Solar Cell or a-Si Thin Film Solar Cell in BIPV System (광 입사각이 BIPV에 적용되는 단결정 또는 비정질 실리콘 태양전지의 양자효율에 미치는 영향)

  • Kang, Jeong-Wook;Son, Chan-Hee;Cho, Guang-Sup;Yoo, Jin-Hyuk;Kim, Joung-Sik;Park, Chang-Kyun;Cha, Sung-Duk;Kwon, Gi-Chung
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.1
    • /
    • pp.62-68
    • /
    • 2012
  • The conversion efficiency of solar cells depending on incident angle of light is important for building-integrated photovoltaics (BIPV) applications. The quantum efficiency is the ratio of the number of charge carriers collected by the solar cell to the number of photons of a given energy shining on the solar cell. The analysis of angle dependence of quantum efficiencies give more information upon the variation of power output of a solar cell by the incident angle of light. The variations in power output of solar cells with increasing angle of incidence is different for the type of cell structures. In this study we present the results of the quantum efficiency measurement of single-crystalline silicon solar cells and a-Si:H thin-film solar cells with the angle of incidence of light. As a result, as the angle of incidence increases in single-crystalline silicon solar cells, quantum efficiency at all wavelength (300~1,100 nm) of light were reduced. But in case of a-Si:H thin-film solar cells, quantum efficiency was increased or maintained at the angle of incidence from 0 degree to about 40 degrees and dramatically decrease at more than 40 degrees in the range of visible light. This results of quantum efficiency with increasing incident angle were caused by haze and interference effects in thin-film structure. Thus, the structural optimization considering incident angle dependence of solar cells is expected to benefit BIPV.

Maximum power point tracking controller of solar cell by means of chopper system (쵸퍼 방식에 의한 태양전지의 최대 출력점 제어기의 구성)

  • Chung, Y.T.;Han, K.H.;Kim, Y.J.;Lee, S.H.;Han, N.D.
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.482-485
    • /
    • 1991
  • This paper discusses a maximum power point tracking controller (MPPTC) by using chopper with an adjustable input to output voltage. The MPPTC is determined by sensing only the actual voltage from solar cell array. It is simple and continuously tracks the solar cell array maximum power point regardless of the load type. Also, the system obtains protection circuit to protect overcharge and disovercharge against the battery.

  • PDF

A Study for Correlativity of Hydrogen Production Using Artificial Luminous Intensity (인공조도를 이용한 수소발생량과의 상관성에 관한 연구)

  • Jung, You-Ra;Hong, Chang-Woo;Choi, Young-Sung;Lee, Kyung-Sup
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.2
    • /
    • pp.218-221
    • /
    • 2010
  • This paper presents energy efficiency about an electrolyser which is related with the hybrid system of solar cell and fuel cell for using the system more fully. The water electrolyser is the exact reverse of a hydrogen fuel cell; it produces gaseous hydrogen and oxygen from water. Electrolyser technology may be implemented at a variety of scales wherever there is an electricity supply to provide hydrogen and/or oxygen for virtually any requirement. Also, this paper shows optimum operating point in the electrolyser for saving cost of the electrical energy with hybrid system.