• Title/Summary/Keyword: Sol-gel matrix

Search Result 104, Processing Time 0.025 seconds

Fabrication of Nearly Monodispersed Silica Nanoparticles by Using Poly(1-vinyl-2-pyrrolidinone) and Their Application to the Preparation of Nanocomposites

  • Chung, You-Sun;Jeon, Mi-Young;Kim, Chang-Keun
    • Macromolecular Research
    • /
    • v.17 no.1
    • /
    • pp.37-43
    • /
    • 2009
  • To fabricate dental nanocomposites containing finely dispersed silica nanoparticles, nearly monodispersed silica nanoparticles smaller than 25 nm were synthesized without forming any aggregates via a modified sol-gel process. Since silica nanoparticles synthesized by the Stober method formed aggregates when the particle size is smaller than 25 nm, the synthetic method was modified by changing the reaction temperature and adding poly(1-vinyl-2-pyrrolidinone) (PVP) to the reaction mixture. The size of the formed silica nanoparticles was reduced by increasing the reaction temperature or adding PVP. Furthermore, the formation of aggregates with primary silica nanoparticles smaller than 25 nm was prevented by increasing the amount of PVP added to the reaction mixture. To enhance the dispersion of the silica particles in an organic matrix, the synthesized silica nanoparticles were treated with 3-methacryloxypropyltrimethoxysilane ($\gamma$-MPS). A dental nanocomposite containing finely dispersed silica nanoparticles could be produced by using the surface-treated silica nanoparticles.

Photochromic Polysiloxanes Substituted with 1,2-Bis(2-methyIbenzo[b]thiophene-3-yl)hexafluorocyclopentene

  • Shin, Hee-Won;Kim, Yong-Rok;Kim, Eun-Kyoung
    • Macromolecular Research
    • /
    • v.13 no.4
    • /
    • pp.321-326
    • /
    • 2005
  • Photochromic diarylethene polymers (DPs) in which 1,2-bis(2-methylbenzo[b ]thiophene-3-yl)hexafluorocyclopentene (BTF6) were covalently grafted onto the polymer main chain as pendant photochromic units were newly synthesized and their photochromic properties were investigated using steady-state and picosecond timeresolved spectroscopies. Polysiloxanes substituted with BTF6 molecules were prepared by sol-gel process using a mixture of tetraethoxysilane (TEOS), a silylated BTF6, and an organically modified silane precursor in the presence of HCl. The polysiloxane film (DP1) prepared from $\omega-methoxy$ poly(ethylene glycol) 3-(triethoxysilyl) propylcarbainate (MPGSC) as the silane precursor showed a much lower glass transition temperature than that (DP2) from heptadecafluorodecyltrimethoxysilane (HDFTMS). The ring-closure quantum yields of DP1 and DP2 were determined to be 0.20 and 0.02, respectively. Such a large difference in the quantum yield was attributed to the polymer matrix environment of the free inner volume.

Photopolymers for 3D optical recording (3차원 광기록용 포토폴리머)

  • Lee, Hyo-Jin;Kim, Jeong-Hun;Kim, Eun-Gyeong
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2006.07a
    • /
    • pp.411-412
    • /
    • 2006
  • Photopolymers have been of considerable due to their easy of processing and high sensitivity. Exposure of photopolymers to optical source produce recroding mark where the light initiates a photoreaction that occurs preferentially in regions of high illumination. The photoreaction typically involves polymerization of an acrylic or epoxy monomer dispersed together with a photoinitiators in a polymeric binder. A number of photopolymerizable materials have been developed to apply them in 3D optical recording such as holographic or 3-dimensional data storage. In this presentation, photopolymers derived from sol-gel matrix and transparent polymer binder are summarized. The effect of monomer composition and plasticizers on optical recording will be discussed based on the monomer transport during the photopolymerization.

  • PDF

Carbon-Silica Membranes Derived from Polyimide/Silica Composites for Gas Separation

  • Lee, Young-Moo;Park, Ho-Bum;Kim, Myung-Jun;Jang, Jeong-Gyu
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.47-50
    • /
    • 2003
  • Carbon-silica membranes were Prepared by Pyrolyzing polyimide/silica composite obtained from ill-situ polymerization of alkoxy silanes via sol-gel reaction. In this study, effects of silica content and silica network in polyimide matrix were focused on the gas permeation and separation properties of the final carbon-silica membrane. The membranes prepared were characterized with a field emission scanning electron microscopy (FE-SEM), a solid state $^{29}$ Si nuclear magnetic resonance spectroscopy ($^{29}$ Si-NMR), an electron spectroscopy for chemical analysis (ESCA), a thermogravimetric analysis (TGA) and gas permeation tests.

  • PDF

Microstructural Properties of PZT Heterolayered Thin Films Prepared by Sol-Gel Method (솔-젤법으로 제작한 PZT 이종층 박막의 구조적 특성)

  • 이성갑;김경태;정장호;박인길;이영희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.311-314
    • /
    • 1999
  • Ferroelectric PZT heterolayered thin films were fabricated by spin coating method on the Pt/Ti/SiO$_2$/Si substrate using PZT(10/90) and PZT(90/10) metal alkoxide solutions. All PZT heterolayered films showed a homogeneous grain structure without presence of the rosette structure. It can be assumed that the lower PZT layers a role of nucleation site or seeding layer for the formation of the upper PZT layer. Zr and Ti diffusion into the Pt electrode were mainly distributed at the surface of Pt electrode beneath the PZT/Pt interface. The PZT/Pt interfacial layer showed a microstructure characterized by a grain phase surrounded by a Pb-deficient pyrochlore matrix phase. The relative dielectric constant and the dielectric loss of the PZT-6 film were 567 and 3.6, respectively.

  • PDF

$^{11}B $Nutation NMR Study of Powdered Borosilicates

  • 우애자;한덕영;양경화
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.5
    • /
    • pp.519-524
    • /
    • 1998
  • In this work, we applied the 1D 11B nutation NMR method for the analysis of the local structural environments in powdered borosilicates (SiO2-B2O3). Spin dynamics during a rf irradiation for spin I=3/2 was analytically calculated with a density matrix formalism. Spectral simulation programs were written in MATLAB on a PC. Two borosilicates prepared by the sol-gel process at different stabilization temperature were used for the 1D 11B nutation NMR experiment. The 11B NMR parameters, quadrupole coupling constants (e2qQ/h) and asymmetry parameters (η), for each borosilicate were extracted from the nonlinear least-squares fitting. The effects of heat treatments on the local structures of boron sites in borosilicates were discussed.

Synthesis and characterization of polyamide thin-film nanocomposite membrane containing ZnO nanoparticles

  • AL-Hobaib, A.S.;El Ghoul, Jaber;El Mir, Lassaad
    • Membrane and Water Treatment
    • /
    • v.6 no.4
    • /
    • pp.309-321
    • /
    • 2015
  • We report in this study the synthesis of mixed matrix reverse osmosis membranes by interfacial polymerization (IP) of thin film nanocomposite (TFNC) on porous polysulfone supports (PS). This paper investigates the synthesis of ZnO nanoparticles (NPs) using the sol-gel processing technique and evaluates the performance of mixed matrix membranes reached by these aerogel NPs. Aqueous m-phenyl diamine (MPD) and organic trimesoyl chloride (TMC)-NPs mixture solutions were used in the IP process. The reaction of MPD and TMC at the interface of PS substrates resulted in the formation of the thin film composite (TFC). NPs of ZnO with a size of about 25 nm were used for the fabrication of the TFNC membranes. These membranes were characterized and evaluated in comparison with neat TFC ones. Their performances were evaluated based on the water permeability and salt rejection. Experimental results indicated that the NPs improved membrane performance under optimal concentration of NPs. By changing the content of the filler, better hydrophilicity was obtained; the contact angle was decreased from $74^{\circ}$ to $32^{\circ}$. Also, the permeate water flux was increased from 26 to 49 L/m2.h when the content of NPs is 0.1 (wt.%) with the maintaining of lower salt passage of 1%.

Characteristics of Organic NLO Materials in Silica Matrix Prepared by Sol-gel Process (졸-겔공정에 의해 실리카 구조체에 도입된 유기 NLO 물질의 특성)

  • Jung, Mie-Won;Mun, Jeong-Ho;Shul, Yong-Gun;Wada, Tatsuo
    • Applied Chemistry for Engineering
    • /
    • v.4 no.3
    • /
    • pp.482-487
    • /
    • 1993
  • Organic nonlinear optical materials such as MNA(2-Methyl-4-nitro-aniline), Carbazole 1(5-Nitro-9-hydroxyethyl Carbazole), Carbazole 2(5-Nitro-9-ethyl Carbazole) and DR 1(Disperse Red 1) were incorporated into silica matrix to form a composite thin films. The thermal stability and degree of degradation were compared to these organic-inorganic composite film. Among those films, Carbazole 1 and DR 1 which have terminal -OH group showed enhanced stability for thermal degradation. The effect of polarization and degree of relaxation for the composite thin films incorporated with Carbazole 1 were measured by the absorbance change of UV spectra with time. With polarization treatment of Carbazole 1 incorporated composite film, the intensity of UV absorbance was remarkably reduced. And slow relaxation of Carbazole 1 molecule was suggested from the slightly recovered intensity of UV absorbance after removing the electric field at rooma temperature.

  • PDF

Gas Permeability through Mixed Matrix Membrane of Poly(dimethylsiloxane) with Aluminosilicate Hollow Nanoparticles (알루미노규산염 나노입자를 이용한 Poly(dimethylsiloxane) 복합매질 분리막의 기체투과 특성)

  • Fang, Xiaoyi;Jung, Bumsuk
    • Membrane Journal
    • /
    • v.29 no.1
    • /
    • pp.51-60
    • /
    • 2019
  • In order to improve gas separation properties of polymeric membranes which have been widely applied in the industry field, aluminosilicate hollow nanoparticles named as allophanes were synthesized by sol-gel method and formulated in Poly(dimethylsiloxane) (PDMS) matrix to investigate the gas separation properties of PDMS membrane. Transmission electron microscope (TEM), Energy dispersive X-ray analysis (EDX), X-ray diffractometer (XRD), Surface area and pore size analyzer (BET) and Fourier transform infrared spectrophotometer (FTIR) were carried out to characterize the synthetic allophanes. Then the PDMS mixed matrix membranes were prepared by adding different volume fraction of allophanes. To examine the effect of allophanes addition in PDMS matrix using unmodified allophane and modified ones, the gas permeation experiments were performed using oxygen, nitrogen, methane and carbon dioxide. As the volume fraction of modified allophane increased up to 4.05 Vol% the permeability of four test gases through PDMS mixed matrix membranes increased. Also, the selectivity of $O_2/N_2$ and $CO_2/CH_4$ increased with the contents of the modified allophane. Further improvement of gas separation properties of PDMS mixed matrix membranes containing higher volume percent of allophanes can be expected as long as well dispersion of allophanes in PDMS matrix can be achieved for better PDMS membranes.

Structural and Electrical Properties of Semiconducting YBCO Thin Film Annealed at Various Temperatures for Uncooled Infrared Sensor Application (비냉각형 적외선 센서로 응용하기 위한 반도성 YBa2Cu3O6+x 박막의 열처리 온도에 따른 구조적 전기적 특성)

  • Lee, Tae-Ho;Lee, Sung-Gap;Yeo, Jin-Ho;Jung, Hye-Rin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.10
    • /
    • pp.731-735
    • /
    • 2013
  • YBCO thin films on $SiO_2$/Si substrate were fabricated by spin-coaing of an alkoxide-derived precursor and heat treatment. The structural and electrical properties of the YBCO films were investigated as functions of annealing temperature at $600{\sim}800^{\circ}C$. Although YBCO single phase was not synthesized, dense films of YBCO matrix phase and minor second phases have been successfully fabricated at the annealing temperatures of $650{\sim}800^{\circ}C$. Thickness and temperature coefficient of resistance (TCR) of YBCO thin films with annealing temperature of $750^{\circ}C$ were 0.31 ${\mu}m$ and $-2.92%/^{\circ}C$, respectively.