• Title/Summary/Keyword: Sol-gel ZnO

Search Result 205, Processing Time 0.034 seconds

Temperature-dependent Photoluminescence Study on Aluminum-doped Nanocrystalline ZnO Thin Films by Sol-gel Dip-coating Method

  • Nam, Giwoong;Lee, Sang-Heon;So, Wonshoup;Yoon, Hyunsik;Park, Hyunggil;Kim, Young Gue;Kim, Soaram;Kim, Min Su;Jung, Jae Hak;Lee, Jewon;Kim, Yangsoo;Leem, Jae-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.95-98
    • /
    • 2013
  • The photoluminescence (PT) properties of Al-doped ZnO thin films grown by the sol-gel dip-coating method have been investigated. At 12 K, nine distinct PL peaks were observed at 2.037, 2.592, 2.832, 3.027, 3.177, 3.216, 3.260, 3.303, and 3.354 eV. The deep-level emissions (2.037, 2.592, 2.832, and 3.027 eV) were attributed to native defects. The near-band-edge (NBE) emission peaks at 3.354, 3.303, 3.260, 3.216, and 3.177 eV were attributed to the emission of the neutral-donor-bound excitons ($D^0X$), two-electron satellite (TES), free-to-neutral-acceptors (e,$A^0$), donor-acceptor pairs (DAP), and second-order longitudinal optical (2LO) phonon replicas of the TES (TES-2LO), respectively. According to Haynes' empirical rule, we calculated the energy of a free exciton (FX) to be 3.374 eV. The thermal activation energy for $D^0X$ in the nanocrystalline ZnO thin film was found to be ~25 meV, corresponding to the thermal dissociation energy required for $D^0X$ transitions.

Sensing Characterization of Metal Oxide Semiconductor-Based Sensor Arrays for Gas Mixtures in Air

  • Jung-Sik Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.5
    • /
    • pp.195-204
    • /
    • 2023
  • Micro-electronic gas sensor devices were developed for the detection of carbon monoxide (CO), nitrogen oxides (NOx), ammonia (NH3), and formaldehyde (HCHO), as well as binary mixed-gas systems. Four gas sensing materials for different target gases, Pd-SnO2 for CO, In2O3 for NOx, Ru-WO3 for NH3, and SnO2-ZnO for HCHO, were synthesized using a sol-gel method, and sensor devices were then fabricated using a micro sensor platform. The gas sensing behavior and sensor response to the gas mixture were examined for six mixed gas systems using the experimental data in MEMS gas sensor arrays in sole gases and their mixtures. The gas sensing behavior with the mixed gas system suggests that specific adsorption and selective activation of the adsorption sites might occur in gas mixtures, and allow selectivity for the adsorption of a particular gas. The careful pattern recognition of sensing data obtained by the sensor array made it possible to distinguish a gas species from a gas mixture and to measure its concentration.

Growth behavior on initial layer of ZnO:P layers grown by magnetron sputtering with controlled by $O_2$ partial pressure

  • Kim, Yeong-Lee;An, Cheol-Hyeon;Bae, Yeong-Suk;Kim, Dong-Chan;Jo, Hyeong-Gyun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.28.1-28.1
    • /
    • 2009
  • The superior properties of ZnO such as high exciton binding energy, high thermal and chemical stability, low growth temperature and possibility of wet etching process in ZnO have great interest for applications ranging from optoelectronics to chemical sensor. Particularly, vertically well-aligned ZnO nanorods on large areas with good optical and structural properties are of special interest for the fabrication of electronic and optical nanodevices. Currently, low-dimensional ZnO is synthesized by metal-organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), thermal evaporation, and sol.gel growth. Recently, our group has been reported about achievement the growth of Ga-doped ZnO nanorods using ZnO seed layer on p-type Si substrate by RF magnetron sputtering system at high rf power and high growth temperature. However, the crystallinity of nanorods deteriorates due to lattice mismatch between nanorods and Si substrate. Also, in the growth of oxide using sputtering, the oxygen flow ratio relative to argon gas flow is an important growth parameter and significantly affects the structural properties. In this study, Phosphorus (P) doped ZnO nanorods were grown on c-sapphire substrates without seed layer by radio frequency magnetron sputtering with various argon/oxygen gas ratios. The layer change films into nanorods with decreasing oxygen partial pressure. The diameter and length of vertically well-aligned on the c-sapphire substrate are in the range of 51-103 nm and about 725 nm, respectively. The photoluminescence spectra of the nanorods are dominated by intense near band-edge emission with weak deep-level emission.

  • PDF

Influence of Fast Neutron Irradiation on the Electrical and Optical Properties of Li Doped ZnSnO Thin Film Transistor (Li 도핑된 ZnSnO 박막 트랜지스터의 전기 및 광학적 특성에 대한 고속 중성자 조사의 영향)

  • Cho, In-Hwan;Kim, Chan-Joong;Jun, Byung-Hyuk
    • Korean Journal of Materials Research
    • /
    • v.30 no.3
    • /
    • pp.117-122
    • /
    • 2020
  • The effects of fast neutron irradiation on the electrical and optical properties of Li (3 at%) doped ZnSnO (ZTO) thin films fabricated using a sol-gel process are investigated. From the results of Li-ZTO TFT characteristics according to change of neutron irradiation time, the saturation mobility is found to increase and threshold voltage values shift to a negative direction from 1,000 s neutron irradiation time. X-ray photoelectron spectroscopy analysis of the O 1s core level shows that the relative area of oxygen vacancies is almost unchanged with different irradiation times. From the results of band alignment, it is confirmed that, due to the increase of electron carrier concentration, the Fermi level (EF) of the sample irradiated for 1,000 s is located at the position closest to the conduction band minimum. The increase in electron concentration is considered by looking at the shallow band edge state under the conduction band edge formed by fast neutron irradiation of more than 1,000 s.

Effects of B Doping on Structural, Optical, and Electrical Properties of ZnO Nanorods Grown by Hydrothermal Method

  • Kim, Soaram;Nam, Giwoong;Park, Hyunggil;Yoon, Hyunsik;Kim, Byunggu;Kim, Jin Soo;Kim, Jong Su;Leem, Jae-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.337-337
    • /
    • 2013
  • ZnO seed layers were deposited on a quartz substrate using the sol-gel method, and B-doped ZnO (BZO) nanorods with different B concentrations ranging from 0 to 2.5 at.% were grown on the ZnO seed layers by the hydrothermal method. The structural, optical, electrical propertiesof the ZnO and BZO nanorods were investigated using field-emission scanning electron microscopy, X-ray diffraction (XRD), photoluminescence (PL), ultraviolet-visible spectroscopy, and hall effect. The ZnO and BZO nanorods grew well aligned on the surface of the quartz substrates. From the XRD data, it can be seen that the B doping is responsible for the distortion of the ZnO lattice. The PL spectra show near-band-edge emission and deep-level emission, and they also show that B doping significantly affects the PL properties of ZnO nanorods. The optical band gaps are changed by B doping, and thus the Urbach energy value changed with the optical band gap of the ZnO nanorods. From the hall measurements, it can be observed that the values of electrical resistivity, carrier concentration, and mobility are changed by B doping.

  • PDF

Electrical and optical properties of ZnO thin films grown by MOCVD (MOCVD 법으로 성장한 ZnO 박막의 전기적, 광학적 특성 평가)

  • Kong, Bo-Hyun;Kim, Dong-Chan;Han, Won-Suk;Kim, Young-Yi;Ahn, Cheol-Hyoun;Kang, Si-Woo;Yi, Yu-Jin;Cho, Hyung-Koun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.150-150
    • /
    • 2007
  • ZnO는 3.37eV의 넓은 에너지 밴드갭을 가지고 있으며, 60meV의 큰 엑시톤(exciton) 결합에너지의 특성을 가지고 있어 UV 영역의 소스로서 가장 활용도가 클 것으로 예상된다. 특히 ZnO 박막은 청색과 자외선 발광소자 및 광전자 소자, 화학적 센서로 활용이 가능하다. 최근 ZnO 박막을 이용한 LED 및 LD 소자 제작에 대한 연구가 국내외적으로 매우 활발하게 이루어지고 있다. 이런 소자를 제작할 때 가장 우선시 되는 것이 ZnO 박막의 전기적은 특성(캐리어 밀도, 전도도, 이동도, 비저항)이다. ZnO 박막을 성장하는 방법으로는 sputtering, PLD, MOCVD, sol-gel 법 등 여러방법이 있지만, MOCVD 법은 소스인 DEZn 와 산소의 유량이 조절이 가능하여 박막의 특성 다양하게 변화시킬 수 있는 장정이 있다. 본 연구에서는 MOCVD 법을 이용하여 사파이어 기판위에 ZnO 박막을 성장 시켰다. 성장 시 VI족 소스인 산소가스와 II족 소스인 DEZn 양을 조절함으로써 이때 변화되는 박막의 전기적, 광학적, 구조적 특성에 대해 연구하였다.

  • PDF

Optical and electrical property of Indium-doped ZnO (IZO) grown by Atomic Layer Deposition (ALD) using Et2InN(TMS)2 as In precursor and H2O oxidant

  • Jo, Yeong-Jun;Jang, Hyo-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.421.1-421.1
    • /
    • 2016
  • We studied indium-doped zinc oxide (IZO) film grown by atomic layer deposition (ALD) as transparent conductive oxide (TCO). A variety of TCO layer, such as ZnO:Al (AZO), InSnO2(ITO), Zn (O,S) etc, has been grown by various method, such as ALD, chemical vapor deposition (CVD), sputtering, laser ablation, sol-gel technique, etc. Among many deposition methods, ALD has various advantages such as uniformity of film thickness, film composition, conformality, and low temperature deposition, as compared with other techniques. In this study, we deposited indium-doped zinc oxide thin films using diethyl[bis(trimethylsilyl)amido]indium [Et2InN(TMS)2] as indium precursor, DEZn as zinc precursor and H2O as oxidant for ALD and investigated the optical and electrical properties of IZO films. As an alternative, this liquid In precursor would has several advantages in indium oxide thin-film processes by ALD, especially for low resistance indium oxide thin film and high deposition rate as compared to InCp, InCl3, TMIn precursors etc. We found out that Indium oxide films grown by Et2InN(TMS)2 and H2O precursor show ALD growth mode and ALD growth window. We also found out the different growth rate of Indium oxide as the substrate and investigated the effect of the substrate on Indium oxide growth.

  • PDF

Photocatalytic Performance of ZnS and TiO2 Supported on AC Under Visible Light Irradiation

  • Meng, Ze-Da;Cho, Sun-Bok;Ghosh, Trisha;Zhu, Lei;Choi, Jong-Geun;Park, Chong-Yeon;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.22 no.2
    • /
    • pp.91-96
    • /
    • 2012
  • AC and ZnS modified $TiO_2$ composites (AC/ZnS/$TiO_2$) were prepared using a sol-gel method. The composite obtained was characterized by Brunauer-Emmett-Teller (BET) surface area measurements, X-ray diffraction (XRD), energy dispersive X-ray (EDX) analysis, scanning electron microscope (SEM) analysis, and according to the UV-vis absorption spectra (UV-vis). XRD patterns of the composites showed that the AC/ZnS/$TiO_2$ composites contain a typical single and clear anatase phase. The surface properties as observed by SEM present the characterization of the texture of the AC/ZnS/$TiO_2$ composites, showing a homogenous composition in the particles showing the micro-surface structures and morphology of the composites. The EDX spectra of the elemental identification showed the presence of C and Ti with Zn and S peaks for the AC/ZnS/$TiO_2$ composite. UV-vis patterns of the composites showed that these composites had greater photocatalytic activity under visible light irradiation. A rhodamine B (Rh.B) solution under visible light irradiation was used to determine the photocatalytic activity. The degradation of Rh.B was determined using UV/Vis spectrophotometry. An increase in the photocatalytic activity was observed. From the photocatalytic results, the excellent activity of the Y-fullerene/$TiO_2$ composites for the degradation of methylene blue under visible irradiation could be attributed to an increase in the photo-absorption effect caused by the ZnS and to the cooperative effect of the AC.

Dielectrical and Pyroelectrical Properties of $Pb(Zn_{1/3}Nb_{2/3})O_3-Pb(Zr_xTi_{1-x})O_3$ Compound Ceramics ($Pb(Zn_{1/3}Nb_{2/3})O_3-Pb(Zr_xTi_{1-x})O_3$세라믹의 유전 및 초전 특성)

  • 이성갑;조현무
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.10
    • /
    • pp.796-801
    • /
    • 2001
  • Ferroelectric 0.05PZN-xPZT(90/10)-(0.95-x)PZT(10/90) (x=0.65, 0.85) specimens were fabricated by the solid-state reaction method, and especially PZT(90/10) and PZT(10/90) powders were derived by the sol-gel method. All specimens showed a uniform ferroelectric grain without the presence of the pyrocholre phase. Average grain size increased with an increased in sintering temperature, the values for the x=0.65 and x=0.85 specimens sintered at 125$0^{\circ}C$ were 14.4$\mu$m and 9.8$\mu$m, respectively. The dielectric constant and dielectric loss of the x=0.65 specimen sintered at 125$0^{\circ}C$ were 1247. 2.06%, respectively. The coercive field and the remanent polarization of x=0.65 and x=0.85 specimens sintered at 125$0^{\circ}C$ were 8.5kV/cm, 13$\mu$C/$\textrm{cm}^2$ and 17.2kV/cm, 28 $\mu$C/$\textrm{cm}^2$, respectively. The pyroelectric coefficient of the x=0.65 and x=0.85 specimens sintered at 125$0^{\circ}C$ were 5.64$\times$10$^{-8}$ C/$\textrm{cm}^2$K and 2.76$\times$10$^{-8}$ C/$\textrm{cm}^2$K, respectively.

  • PDF

Structure and Pyroelectrical Properties of Pb($Zn_{1/3}Nb_{2/3}$)$O_3$-Pb($Zr_{x}Ti_{1-x}$)$O_3$Compound Ceramics (Pb($Zn_{1/3}Nb_{2/3}$)$O_3$-Pb($Zr_{x}Ti_{1-x}$)$O_3$ 세라믹의 구조적, 초전 특성)

  • 조현무;이성갑;이영희
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.543-546
    • /
    • 2000
  • Ferroeleclric 0.05PZN-xPZT(90/10)-(0.95-x)PZT(10/90) (x=0.65, 0.85) specimens were fabricated by the mixed-oxide method and cold-pressing method using sol-gel derived PZT(90/10) and PZT(10/90) powders. All specimens show a uniform ferroelectric grain without the presence of the pyrocholre phase. Average grain size increased with an increase in sintering temperature, the value for the x=0.65 specimen sintered at 125$0^{\circ}C$ was 14.4$\mu$m. The dielectric constant and dielectric loss of the x=0.65 specimen sintered at 125$0^{\circ}C$ were 1247, 2.06%, respectively. All specimens showed fairly good temperature and frequency stability of dielectric constant with the range from -2$0^{\circ}C$ to 6$0^{\circ}C$ and 100Hz to 10MHz. The coercive field and the remanent polarization of x = 0.65 specimen sintered at 125$0^{\circ}C$ were 8.5 kV/cm and 13 $\mu$C/cm$^2$, respectively. The pyroelectric coefficient of the x=0.65 specimen sintered at 125$0^{\circ}C$ was 5.64$\times$10$^{-8}$ C/cm$^2$K, respectively.

  • PDF