• Title/Summary/Keyword: Sol-Emulsion-Gel

Search Result 22, Processing Time 0.027 seconds

Fabrication of Hollow Micro-particles with Nonspherical Shapes by Surface Sol-gel Reaction (표면 솔-젤 반응을 활용한 마이크로미터 크기의 비구형상 공동 입자의 제조)

  • Cho, Young-Sang;Jeon, Seog-Jin;Yi, Gi-Ra
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.611-618
    • /
    • 2007
  • We demonstrate the sol-gel coating technique of colloidal clusters for producing hollow micro-particles with complex morphologies. Cross-linked amidine polystyrene (PS) microspheres were synthesized by emulsifier-free emulsion copolymerization of styrene and divinylbenzene. The amidine PS particles were self-organized inside toluene-in-water emulsion droplets to produce large quantities of colloidally stable clusters. These clusters were coated with thin silica shell by sol-gel reaction of tetraethylorthosilicate (TEOS) and ammonia, and the organic polystyrene cores were removed by calcination at high temperature to generate nonspherical hollow micro-particles with complex morphologies. This process can be used to prepare hollow particles with shapes such as doublets, tetrahedra, icosahedra, and others.

Improved Immobilized Enzyme Systems Using Spherical Micro Silica Sol-Gel Enzyme Beads

  • Lee, Chang-Won;Yi, Song-Se;Kim, Ju-Han;Lee, Yoon-Sik;Kim, Byung-Gee
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.4
    • /
    • pp.277-281
    • /
    • 2006
  • Spherical micro silica sol-gel immobilized enzyme beads were prepared in an emulsion system using cyclohexanone and Triton-X 114. The beads were used for the in situ immobilization of transaminase, trypsin, and lipase. Immobilization during the sol to gel phase transition was investigated to determine the effect of the emulsifying solvents, surfactants, and mixing process on the formation of spherical micro sol-gel enzyme beads and their catalytic activity. The different combinations of sol-gel precursors affected both activity and the stability of the enzymes, which suggests that each enzyme has a unique preference for the silica gel matrix dependent upon the characteristics of the precursors. The resulting enzyme-entrapped micronsized beads were characterized and utilized for several enzyme reaction cycles. These results indicated improved stability compared to the conventional crushed form silica sol-gel immobilized enzyme systems.

Change of Particle Size of Spherical Alumina Powders Prepared by Emulsion Method in the Region of Low Hydroxypropylcellulose Concentration (저농도의 HPC 영역에서 에멀젼법에 의해 제조된 구형 알루미나 분말의 입자 크기 변화)

  • Ahn, C.W.;Park, K.S.;Yoo, H.S.;Cho, K.;Lee, Y.W.;Yang, M.S.
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.5
    • /
    • pp.594-600
    • /
    • 1995
  • Spherical alumina gel powders were produced by hydrolysis of aluminum sec-butoxide (Al(sec-OC4H9)3) in a n-octanol/acetonitrile mixed solvent. The enlargement of particle size was induced by increasing HPC (hydroypropylcellulose) concentration (0.005, 0.1, and 0.05 g/ι) and emulsion-state aging time (10 min and 360 min). Mean particle sizes of dried alumina gel powders increased from 1.4 ${\mu}{\textrm}{m}$ to 3.5${\mu}{\textrm}{m}$ at 10-min emulsion-state aging time and from 1.9${\mu}{\textrm}{m}$ to 4.1${\mu}{\textrm}{m}$ at 360-min emulsion-state aging time as HPC concentration increased from 0.005 g/ι to 0.05 g/ι. At the same HPC concentration, particle size of dried alumina gel powder increased with increasing of emulsion-state aging time from 10 min to 360 min. The increase in the average particle size of dried alumina gel powder with increase in HPC concentration was interpreted as the enlargement of particles from alkoxide emulsions unprotected by HPC. The produced dried gel powder calcined at 115$0^{\circ}C$ for one hour transformed to $\alpha$-alumina.

  • PDF

Characterization of Ceramic Composite-Membranes Prepared by TEOS-PEG Coating Sol (TEOS-PEG계 Sol-Gel코팅에 의한 세라믹 분리 막의 제조 및 특성)

  • Kim, Tae-Bong;Choi, Se-Young;Kim, Goo-Dae
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.3 s.274
    • /
    • pp.165-170
    • /
    • 2005
  • Sol-gel methods offer many advantages over conventional slip-casting, including the ability to produce ceramic membranes. They are purer, more homogeneous, more reactive and contain a wider variety of compositions. We produced ormosil sol using sol-gel process under various molecular weight of polymer species[polyethylene glycol(PEG)] in total system [Tetraethyl ortho silicate(TEOS)-polyethylene glycol(PEG)]. The properties of as-prepared ormosil sol such as viscosity and gelation time are characterized. Also, the ceramic membrane was prepared by dip-coating with synthetic sol and its microstructure was observed by scanning electron microscopy. The permeability and rejection efficiency of membrane for oil/water emulsion were evaluated as cross­flow apparatus. The ormosil sol coated membrane was easily formed by steric effect of polymer and it improved flux efficiency because infiltration into porous support decreased. Its flux efficiency was elevated about $200\;l/m^2h$ compared with colloidal sol coated membrane at point of five minutes from starting test.

Characterization of Mechanical Property Change in Polymer Aerogels Depending on the Ligand Structure of Acrylate Monomer

  • Lee, Kyu-Yeon;Jung, Hae-Noo-Ree;Mahadik, D.B.;Park, Hyung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.3
    • /
    • pp.15-20
    • /
    • 2016
  • In an effort to overcome the weakness of aerogel, polymer aerogels have been prepared by copolymerizing the different types of monomers through sol-gel process. Polymerizing the successive phase of a high internal phase emulsion, which has interconnected porous structure, porous polymer aerogel can be manufactured. In this paper, we use the styrene/divinylbenzene chain as a basic monomer structure, and additionally use 2-ethylhexyl methacrylate (2-EHMA) or 2-ethylhexyl acrylate (2-EHA) as monomers for distinguishing the visible mechanical properties of synthesized polymer aerogel. We can observe the different tendency of polymer aerogels by kinds of monomer or ratio. Flexibility and microstructure can be changed by the types of monomer. EHA polymer aerogel shows high flexibility and thin microstructure, and EHMA polymer aerogel shows high hardness and thick microstructure. EHA/EHMA polymer aerogel shows the intermediate nature between them. By utilizing the mechanical properties of three types of polymer aerogels to adequate situation or environment, polymer aerogels could be used as drug agent, ion exchange resin, oil filter and insulator, and so on.

Effect of Reaction Condition and Solvent on The Size and Morphology of Silica Powder Prepared by An Emulsion Technique

  • Park, Won-Kyu;Kim, Dae-Yong
    • The Korean Journal of Ceramics
    • /
    • v.6 no.3
    • /
    • pp.229-235
    • /
    • 2000
  • The spherical silica powder was synthesized by varying the kinds of solvent and mixing energy in emulsion method. The stirring speed varied from 500 to 1000 r.p.m. at 5$0^{\circ}C$ for 2h. Toluene in benzyl groups and a series of alkanes were used as dispersant. The average size of spherical silica particles decreased with increasing the stirring speed and the chain length o solvents used in this work. The average size was controlled in the range of 134~28$\mu\textrm{m}$ by selecting a proper solvent and stirring speed. The optimum processing parameters were described in details.

  • PDF

Synthesis of SiC Nanoparticles by a Sol-Gel Process (나노 실리카와 카본블랙이용 탄화열 반응으로 나노 SiC 합성 및 특성)

  • Jeong, Kwang-Jin;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.23 no.4
    • /
    • pp.246-249
    • /
    • 2013
  • Nano-sized ${\beta}$-SiC nanoparticles were synthesized combined with a sol-gel process and a carbothermal process. TEOS and carbon black were used as starting materials for the silicon source and carbon source, respectively. $SiO_2$ nanoparticles were synthesized using a sol-gel technique (Stober process) combined with hydrolysis and condensation. The size of the particles could be controlled by manipulating the relative rates of the hydrolysis and condensation reactions of tetraethyl orthosilicate (TEOS) within the micro-emulsion. The average particle size and morphology of synthesized silicon dioxide was about 100nm and spherical, respectively. The average particles size and morphology of the used carbon black powders was about 20nm and spherical, respectively. The molar ratio of silicon dioxide and carbon black was fixed to 1:3 in the preparation of each combination. $SiO_2$ and carbon black powders were mixed in ethanol and ball-milled for 12 h. After mixing, the slurries were dried at $80^{\circ}C$ in an oven. The dried powder mixtures were placed in alumina crucibles and synthesized in a tube furnace at $1400{\sim}1500^{\circ}C$ for 4 h with a heating rate of $10^{\circ}C$/min under flowing Ar gas (160 cc/min) and furnace cooling down to room temperature. SiC nanoparticles were characterized by XRD, TEM, and SAED. The XRD results showed that high purity beta silicon carbide with excellent crystallinity was synthesized. TEM revealed that the powders are spherical shape nanoparticles with diameters ranging from 15 to 30 nm with a narrow distribution.

Quality properties of whole milk powder on chicken breast emulsion-type sausage

  • Kang, Kyu-Min;Lee, Sol-Hee;Kim, Hack-Youn
    • Journal of Animal Science and Technology
    • /
    • v.63 no.2
    • /
    • pp.405-416
    • /
    • 2021
  • The aim of the study was to determine the effect of whole milk powder (WMP) as heterologous proteins on chicken breast emulsion-type sausages. The quality properties of WMP on such chicken breast emulsion-type sausages were investigated by measuring the proximate composition, pH, color, cooking yield, protein solubility, and by applying other methods, such as texture profile analysis (TPA), microphotograph, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and electronic nose. The crude fat, protein, and ash contents of 15% WMP samples were significantly higher than the control samples (p < 0.05). The redness of the cooked samples significantly increased with an increase in the WMP contents (p < 0.05). The cooking yield of WMP treated samples was significantly higher than the control sample (p < 0.05). Additionally, the hardness, gumminess, and chewiness of WMP treated samples were significantly higher than the control sample (p < 0.05). The sarcoplasmic and myofibrillar proteins of samples containing 15% WMP were significantly higher than the control samples (p < 0.05). The result of SDS-PAGE showed that the C protein, sarcoplasmic protein, actin, and tropomyosin increased with an increase in the WMP contents. The principal component analysis plot of WMP-treated samples was clearly different from that of the control samples. Based on these results, it was predicted that WMP could be useful as heterologous protein on emulsion-type sausage.

Preparation and Characterization of Phenolic/Furfural Organic Gel Microspheres in Supercritical $CO_2$ (초임계 이산화탄소를 이용한 Phenolic/Furfural계 유기 겔 입자의 합성 및 물성)

  • 이경남;이해준;김중현
    • Polymer(Korea)
    • /
    • v.24 no.1
    • /
    • pp.8-15
    • /
    • 2000
  • Phenolic/furfural(P/F) gel microspheres were successfully produced by new supercritical $CO_2$-based process. $CO_2$-soluble poly(dimethylsiloxane) (PDMS) was used as the stabilizer in this system. Spherical morphology of the gel microspheres was confirmed by scanning electron microscopy. Particle size and particle size distribution of P/F gel microspheres can be modified by variety of the solids content and the stabilizer content. The resultant P/F gel microspheres have average particle size in the range of 1-6 ${\mu}{\textrm}{m}$. The structure of P/F gel microspheres was revealed by thermogravimetric analysis and IR analysis.

  • PDF

기능성 나노식품의 제조기술 및 전망

  • Kim, Dong-Myeong
    • 한국유가공학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.17-29
    • /
    • 2004
  • Nanofood can be simply defined as natural polymer particles containing functional food materials in nanoscale that are synthesized by polymerization or emulisification process. They have very uniform diameters in the range of 1 to 100 nm and extensive surface areas due to the small particle size in spite of their non-porosity. Although the technique to produce nanofood has not Bong developing history, many works have been achieved in various fields. Nanofood has a lot of special advantages, such as functionality, diversity, applicability, etc. In case of the domestic food industries, however, the accumulation of related technique is insufficient against developed countries except used food materials. Also, it is difficult to acquire technical know-how from the developed countries that possess those technologies. We have been studied on preparing functional nanofood and developing new production processes since 1999. Last 5 years we have laid the foundation on the preparation of nanofood and now are focusing on developing new processes of nanofood and expending the field of its applications.

  • PDF