• Title/Summary/Keyword: SoilLoss

Search Result 1,069, Processing Time 0.027 seconds

A Methodology for Selection of Habitat Management Areas for Amphibians and Reptiles Considering Soil Loss (토양유실을 고려한 양서파충류의 서식지 관리지역 선정방법)

  • Kim, Ji-Yeon;Lee, Dong-Kun;Mo, Yong-Won
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.21 no.6
    • /
    • pp.55-69
    • /
    • 2018
  • As disaster risk and climate change volatility increase, there are more efforts to adapt to disasters such as forest fires, floods, and landslides. Most of the research, however, is about influence of human activities on disaster and there is few research on disaster adaptation for species. Previous studies focusing on biodiversity in selecting conservation areas have not addressed threats of disaster in the habitats for species. The natural disasters sometimes play role of drivers of ecological successions in the long run, but they might cause serious problems for the conservation of vulnerable species which are endangered. The purpose of this study is to determine whether soil loss (SL) is effective in selecting habitat management areas for amphibians and reptiles. RUSLE model was used to calculate soil loss (SL) and the distribution of each species (SD) was computed with MaxEnt model to find out the biodiversity index. In order to select the habitat management area, we estimated the different results depending if value of soil loss was applied or not by using MARXAN, a conservation priority selection tool. With using MARXAN, conservation goals can be achieved according to the scenario objectives, and the study has been made to meet the minimum habitat area. Finally, the results are expressed in two; 1) the result of soil loss and biodiversity with MATRIX method and 2) the result of regional difference calculated with MARXAN conservation prioritization considering soil loss. The first result indicates that the area with high soil loss and low species diversity have lower conservation values and thus can be managed as natural disturbances. In the area where soil loss is high and species diversity is also high, it becomes where a disaster mitigation action should be taken for the species. According to the conservation priorities of the second result, higher effectiveness of conservation was obtained with fewer area when it considered SL in addition to SD, compared to when considered only biodiversity. When the SL was not taken into consideration, forest area with high distribution of species were important, but when SL considered, the agricultural area or downstream of the river were represented to be a major part of habitats. If more species data or disaster parameters other than soil loss are added as variables later, it could contribute as a reference material for decision-making to achieve various purposes.

Causual Analysis on Soil Loss of Safety Class Oryun Tunnel Area in Landslide Hazard Map (산사태 위험지도에서 안전등급지역인 오륜터널 일대의 토사유실 원인분석)

  • Kim, Tae Woo;Kang, In Joon;Choi, Hyun;Lee, Byung Gul
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.1
    • /
    • pp.17-24
    • /
    • 2016
  • At present, summer cloudburst and local torrential rainfalls have increased in this country, because of climatic change. Therefore, studies on prevention of soil loss have been actively proceeded, and Korea Forest Service has offered landslide hazard map. Landslide hazard map divides risks into 5 classes, by giving weight with 9 kinds of elements. In August 25 2014, soil loss occurred in the whole Oryun Tunnel, Geumjeong-gu, Busan, because of local torrential heavy rain. As a result of comparing with landslide hazard map, the area where soil loss occurred in reality is a safety zone on hazard map. Rainfall, soil map, geological map, forest type map, gradient, drainage network, watershed, basin shape, and efflux of the whole Oryun Tunnel where soil loss occurred were analyzed. As a result of an analysis, it is judged that soil, forest type, much efflux and peak discharge, degree of water network and basin shape of a place where landslide occurred are causes of soil loss. It is judged that efflux, peak discharge, and basin shape by the localized rainfall that is not considered in landslide hazard map of them are the biggest causes of soil loss. It is judged that efflux, peak discharge, degree of water network and basin shape by the rainfall are important through a study on a causual analysis on soil loss in the whole Oryun Tunnel where is one of occurrence area where a lot of propertywere lost by the record local torrential rainfalls. A localized torrential downpour should be prepared by considering these elements on judgement of a landslide hazard area.

Evaluation of Erosivity Index (EI) in Calculation of R Factor for the RUSLE

  • Kim, Hye-Jin;Song, Jin-A;Lim, You-Jin;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.1
    • /
    • pp.112-117
    • /
    • 2012
  • The Revised Universal Soil Loss Equation (RUSLE) is a revision of the Universal Soil Loss Equation (USLE). However, changes for each factor of the USLE have been made in RUSLE which can be used to compute soil loss on areas only where significant overland flow occurs. RUSLE which requires standardized methods to satisfy new data requirements estimates soil movement at a particular site by utilizing the same factorial approach employed by the USLE. The rainfall erosivity in the RUSLE expressed through the R-factor to quantify the effect of raindrop impact and to reflect the amount and rate of runoff likely is associated with the rain. Calculating the R-factor value in the RUSLE equation to predict the related soil loss may be possible to analyse the variability of rainfall erosivity with long time-series of concerned rainfall data. However, daily time step models cannot return proper estimates when run on other specific rainfall patters such as storm and daily cumulative precipitation. Therefore, it is desirable that cross-checking is carried out amongst different time-aggregations typical rainfall event may cause error in estimating the potential soil loss in definite conditions.

The Analysis of Optimum Resolution with Different Scale of Soil Map for the Calculation of Soil Loss (토양침식량 산정에서 토양도 축척에 따른 적정 해상도 분석에 관한 연구)

  • Lee, Greun-Sang;Jang, Young-Ryul;Cho, Gi-Sung
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.3
    • /
    • pp.1-10
    • /
    • 2003
  • RUSLE(revised universal soil loss equation) has been widely used for estimating soil loss. It is very difficult to validate the model estimation since the calculated soil loss should be compared with the survey data for quantification. The input variables for RUSLE model were estimated to grid cell for raster analysis in Bosung basin. Both reconnaissance(1:250,000) and detailed(1:25,000) soil maps were used to derive the input variables for soil erodibility factor. Soil loss calculated using RUSLE were compared to the unit sediment deposit surveyed by KICT(Korea Institute of Construction Technology, 1992) in Bosung basin for assessment. Unit sediment deposit from the cell size of 120m and 150m were the closest to the survey data in 1:250,000 and 1:25,000 map scale, respectively.

  • PDF

A Perspective on the Sustainability of Soil Landscape Based on the Comparison between the Pre-Anthropocene Soil Production and Late 20th Century Soil Loss Rates (인류세 이전 토양생성률과 20세기 후반 토양유실률 비교를 통한 토양경관 지속가능성 전망)

  • Byun, Jongmin;Seong, Yeong Bae
    • Journal of the Korean Geographical Society
    • /
    • v.50 no.2
    • /
    • pp.165-183
    • /
    • 2015
  • It is well known that, since the 15th century, the amount of soil loss in our country due to change in land use by human has increased more rapidly than ever before. However we cannot answer the question 'How long can the soil persist under the current rates of soil loss?', because it was difficult to quantify the soil production rate. With the advancement of accelerated mass spectrometry, the attempt to quantify rate of soil production and derive soil production function succeeded, and recently it was also applied into the Daegwanryeong Plateau. Here we introduce the principles for quantifying soil production and deriving soil production function using terrestrial cosmogenic nuclides, and then compare the soil production rates from the plateau with soil loss data after the late 20th century, and finally estimate how long the soil can persist. Averaged soil production rate since the Holocene derived from the plateau is revealed as ${\sim}0.05[mm\;yr^{-1}]$, and, however, the recent soil loss rate of intensively used farmlands at the same region is up to sixty times greater than the soil production rate. Thus, if current land use system is maintained, top soils on the cultivated lands over hillslopes especially in upland areas are expected to disappear within several decades at the earliest.

  • PDF

Evaluation of Soil Loss According to Surface Covering and Tillage Methods in Corn Cultivation

  • Lee, Jeong-Tae;Lee, Gye-Jun;Ryu, Jong-Soo;Kim, Jeom-Soon;Han, Kyung-Hwa;Park, Seok-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.510-518
    • /
    • 2013
  • Corn was mainly cultivated in slope land during summer season when heavy rain falls so that soil loss occurs severely. Especially, soil disturbance and exposure of topsoil by conventional tillage intensifies soil loss by heavy rain. The aim of this study was to develop surface covering and tillage methods for reducing soil loss in corn cultivation. The experiment was conducted in 17% sloped lysimeter with 8 treatments including strip tillage after surface covering with rye residue, strip tillage after residue covering of several crops and sod culture, black polyethylene film covering after conventional tillage and control. Amount of runoff water and eroded soil, and corn growth were investigated. Amounts of runoff water in all plots except black polyethylene plot ranged from 152 to 375 $m^3\;ha^{-1}$, accounting for 13~32% of 1,158 $m^3\;ha^{-1}$ in control. Amount of eroded soil decreased by 94 to 99% (3 to 89 kg $ha^{-1}$) in plots of strip tillage after covering with crop residues compared to control with 1,739 kg $ha^{-1}$. Corn yields in plots of strip tillage after covering with crop residues ranged from 6.0 to 6.9 Mg $ha^{-1}$, while that of control was 6.5 Mg $ha^{-1}$. The results suggest that strip tillage methods after surface covering with crop residues are very effective on soil conservation of slope land in corn cultivation.

Simulation of the Reduction Effect of Soil Loss Using SWAT Model (SWAT 모형을 이용한 토양유실량 저감효과 모의)

  • Jeong, Jin-Kweon;Kim, Hwan-Gi
    • Journal of Environmental Impact Assessment
    • /
    • v.17 no.4
    • /
    • pp.243-253
    • /
    • 2008
  • The purpose of this study was to simulate the reduction effect of soil loss in the Yongdam reservoir watershed using SWAT model. To evaluate accuracy for flow and sediment yield of SWAT model, calibration was performed for the period from Jan. 2002 to Dec. 2003, and the verification for Jan. 2005 to Dec. 2005. The calibration and the verification were carried out using data observed at the Cheoncheon gaging station. The $R^2$ and EI values in terms of a flow were 0.8 and 0.78 respectively for calibration, whereas they for verification were 0.88 and 0.86 respectively. In terms of a sediment yield, they were 0.7 and 0.48 respectively for calibration, whereas for verification were 0.64 and 0.54 respectively. As a results from model simulation, annual mean soil loss rates in terms of forest, paddy and upland were 0.02 ton/ha/yr, 0.15 ton/ha/yr and 7.58 ton/ha/yr, respectively. The results show that the land use type of a upland has more significant impact on a total soil loss as well as a sediment yield than other types of land use. The sediment delivery ratio was determined to be about 0.35. In this study 2 land cover change scenarios for upland area were considered. These scenarios were used an input to SWAT model in order to evaluate their impact on soil loss and sediment delivery. The results show that a reduction of the upland area would reduce the soil loss and sediment yield.

Assessment of Soil Loss in Irrigation Reservoir based on GIS (GIS를 이용한 관개용 저수지의 토사유실량 산정에 관한 연구)

  • Park, Woo Sik;Hong, Soon Heon;Ahn, Chang Hwan;Choi, Hyun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_1
    • /
    • pp.439-446
    • /
    • 2013
  • This paper is about assessment of soil loss in irrigation reservoir based on GIS. Natural disaster caused by soil loss whose natural incidence has been rapidly reduced due to successful tree planting campaign shows high potential risk, since the latest localized heavy rain resulted from extreme weather event and artificial land development acts as direct factors for land disaster. To prevent it, various techniques and technologies have been used to predict effect of soil loss. However, reliability of techniques and technologies to predict its effect precisely is relatively low so far because the natural disaster by soil loss is taken place by complicated interaction between possible factors and direct factors. Geospatial approach is essential to examine these interactions. In this regard, this study will provide detailed plan to improve prediction reliability for soil loss of irrigation reservoir, using GIS that has Hydrologic -Topographical parameter and digital map as its input parameters.

A Study on the Temporal Change of Soil Loss of Kyungan River Basin with GIS (토지이용변화에 따른 경안천 유역 토양유실에 관한 연구)

  • 김상욱;박종화
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 1995.12a
    • /
    • pp.22-32
    • /
    • 1995
  • The purpose of this study is to estimate not only the watershed soil loss but also its temporal changes of Kyungan River basin, the study area, due to the land development. To analyze the soil loss of the river basin, USLE was employed. GIS and remote sensing were also utilized to estimate the soil loss. The data for this analysis consist of a series of thematic map and remotely sensed data. The remotely sensed images for this study are Landsat TM(Oct, 28, 1997 & Sep. 22, 1992), In Kyungan River basin, not only the detection of temporal changes of land use and GVI, but also the estimation of soil loss provided very significant factors that affect to the watershed environment quality. The management of the factors of vegetative cover, slope steepness and length were the keys to reduce soil loss and solve conservation and protection issues of Kyungan River basin. GIS application with USLE to the watershed analysis allows the planner to recognize sensitive sites and to plan strategies to minimize soil loss.

  • PDF

Analysis of the Adequacy Check Dam according to Soil Loss using RUSLE (RUSLE 모형으로 토사유실에 따른 사방댐 적정성 분석)

  • Choi, Hyun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.5
    • /
    • pp.515-524
    • /
    • 2016
  • Damage such as landslides has been caused by natural phenomenon like a heavy rain. As appropriate countermeasures, rather than analysing the cause of the landslide, we used methods of check dam installation and maintenance mountain basin. A check dam is a small, sometimes temporary, dam constructed across a swale, drainage ditch, or waterway to counteract erosion by reducing water flow velocity. In this study, we analysed the adequacy of check dam built to prevent further damage after landslides through GIS and examined the sediment erosion in the existing check dams for an ideal location of check dam, considering the accessibility and size. As a result of reviewing soil loss in the study watershed according to RUSLE(Revised Universal Soil Loss Equation), the basin I had about 2% soil loss reduction, the basin II showed less than 1 % soul loss reduction, and basin III showed the reducing effect of 5 % soil erosion.