• Title/Summary/Keyword: Soil-water characteristic curve (SWCC)

Search Result 66, Processing Time 0.018 seconds

Analysis of the Failure Mode in a Homogeneous Sandy Slope Using Model Test (모형실험을 이용한 균질한 사질토 사면의 붕괴형상 분석)

  • Song, Young-Suk;Park, Joon-Young;Kim, Kyeong-Su
    • The Journal of Engineering Geology
    • /
    • v.32 no.2
    • /
    • pp.209-219
    • /
    • 2022
  • To experimentally investigate the variation of soil characteristics in slope during rainfall and the shape of slope failure, the model test was performed using soil box and artificial rainfall simulator. The model test of slope formed by the homogenous sand was performed, and the saturation pattern in the model slope due to rainfall infiltration was observed. The slope model with the inclination of 35° was set up on the slope of 30°, and the rainfall intensity of 50 mm/hr was applied in the test. The soil depth of 35 cm was selected by considering the size of soil box, and the TDR (time domain reflectometry) sensors were installed at various depths to investigate the change of soil characteristics with time. As the result of model test, the slope model during rainfall was saturated from the soil surface to the subsurface, and from the toe part to the crest part due to rainfall infiltration. That is, the toe part of slope was firstly saturated by rainfall infiltration, and then due to continuous rainfall the saturation range was enlarged from the toe part to the crest part in the slope model. The failure of slope model was started at the toe part of slope and then enlarged to the crest part, which is called as the retrogressive failure. At the end of slope failure, the collapsed area increased rapidly. Also, the mode of slope failure was rotational. Meanwhile, the slope failure was occurred when the matric suction in the slope was reached to the air entry value (AEV) estimated in soil-water characteristic curve (SWCC).

Hydraulic Characteristics of Crushed Stone Mat Considering Mixed Ratio (혼합비를 고려한 쇄석매트의 수리특성)

  • Lee, Jun-Hun;Chae, Chang-Woo;Lee, Ju-Hyeong;Lee, Myung-Goo;Lim, Seong-Yoon;Choi, Young-Chul;Song, Chang-Seob
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1250-1255
    • /
    • 2010
  • In this study, in order to examine the hydraulic characteristics for a crushed stone mat. it was accomplished discharge capacity test and soil-water characteristic curve(SWCC) with the object of the research. From the test result, it produced propriety mixed ratio of the crushed stone which mixes the sand. at the time of crushed stone 100% where it does not mixes the sand it appeared that permeability was biggest. increase of shock and content of the sand showed decrease of air entry value.

  • PDF

Influence of Rainfall-induced Wetting on Unsaturated Weathered Slopes (강우시 국내 불포화 풍화토 사면에서의 습윤영향 분석)

  • Jeong Sang-Seom;Kim Jae-Hong;Park Seong-Wan
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.7
    • /
    • pp.159-169
    • /
    • 2004
  • Surface failures of slopes in weathered soil are caused by infiltration due to prolonged rainfall. These failures are mainly triggered by the deepening of the wetting band accompanied by a decrease in suction induced by the infiltrating water. This paper reports trends of rainfall-induced wetting band depth in two types of weathered soils that are commonly found in Korea. Both theoretical and numerical analyses are presented based on the soil-water characteristic curve (SWCC) obtained using filter paper as well as tensiometer tests. It is found that the magnitude of wetting front suction plays a key role in the stability of slopes in weathered soils. Theoretical analysis based on modified Green and Ampt model tends to underestimate the wetting band depth for typical Korean weathered soils. It was also deduced that for Korean weathered soils, the factor of safety drops rapidly once the wetting band depth of 1.2 m is reached.

Proposal of Design Method for Landslides Considering Antecedent Rainfall and In-situ Matric Suction (선행강우와 현장 모관흡수력을 고려한 산사태 해석 방법 제안)

  • Kim, Jung-Hwan;Jeong, Sang-Seom;Kim, Yong-Min;Lee, Kwang-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.12
    • /
    • pp.11-24
    • /
    • 2013
  • This study presents a design method for typical rainfall-induced landslide considering in-situ matric suction. Actual landslide data are used to validate the proposed method. The soil-water characteristic curve (SWCC) and unsaturated permeability are experimentally determined to estimate hydraulic properties of testing site. The field measurement of matric suction is carried out to monitor in-situ matric suction in a natural slope subjected to rainfall infiltration, which is incorporated in the landslide analysis. The wetting band depth and safety factor of the slope are assessed to clarify the effect of domestic rainfall pattern. Especially, the effect of antecedent rainfall on the slope stability is investigated and discussed in terms of wetting band depth using parametric study. It is found from the result of this study that proposed design method can consider the characteristic of unsaturated soil and effect of antecedent rainfall. The location of the scarp zone is fairly well predicted by proposed design method. Moreover, heavy rainfall, concentrated in the backward part with time, causes the lowest safety factor of the slope. These results demonstrate that decrease in matric suction due to antecedent rainfall may trigger slope instability. After the antecedent rainfall, additional rainfall may cause the slope failure due to increasing wetting band depth.

The Relationship Between Effective Stress and Shear Strength of Weathered Granite Soils Based on Matric Suctions (모관흡수력에 따른 화강풍화토의 유효응력과 전단강도의 관계)

  • Lee, Younghuy;Oh, Seboong;Kim, Kwanghyun;Seong, Yulho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.4
    • /
    • pp.45-51
    • /
    • 2012
  • The shear strength of weathered granite soils under unsaturated condition was evaluated by $K_0$ consolidated triaxial tests. Various matric suctions in the unsaturated triaxial tests were applied using suction-controlled triaxial test apparatus for weathered granite soils obtained in Daegu. Soil water characteristic curve (SWCC) laboratory tests for drying and wetting procedure were performed and van Genuchten curves were fitted by experimental results. The contribution of matric suction in unsaturated soils is directly correlated to effective stress and evaluated from SWCCs. The effective stresses were estimated from these SWCCs and the relationship between effective stress and unsaturated shear strength was determined. In the effective stress description, the unsaturated shear strength with respect to various suctions indicates unique relationship and almost the same as that of the saturated envelope.

Development of VPPE-BE Testing System to Evaluate Modulus under Post-Compaction Variation in Matric Suction for Unsaturated Compacted Soils (다짐지반의 모관흡수력 변화에 따른 탄성계수 평가를 위한 VPPE-BE 시험 시스템 개발)

  • Lee, Sei-Hyun;Seo, Won-Seok;Choo, Yun-Wook;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.5
    • /
    • pp.117-127
    • /
    • 2008
  • The volumetric pressure plate extractor (VPPE) was modified for the measurement of shear wave velocity ($V_s$) at various levels of matric suction as well as soil water characteristic curve (SWCC). A non-destructive technique with a pair of bender element (BE) was employed in order to measure the $V_s$ and the corresponding maximum shear modulus ($G_{max}$) of unsaturated soil specimens. Three types of soil were collected from different road construction sites in Korea. For all test soils, the variations in $G_{max}$ with the various levels of water content and matric suction were investigated using the developed apparatus. Compared with the preceding results from the suction-controlled torsional shear (TS) testing system and in-situ seismic tests, the feasibility fur evaluating modulus characteristics of unsaturated compacted soils with the developed VPPE-BE system was assessed. It was confirmed that the newly developed system would be potentially helpful in modeling seasonal variation of modulus.