• Title/Summary/Keyword: Soil-contaminated sites

Search Result 212, Processing Time 0.025 seconds

Risk Assessment of Volatile Organic Compounds for Vapor Intrusion Pathway Using Various Estimation Methodology of Indoor Air Concentration (다양한 실내 침투 휘발물질 농도 예측 방법을 이용한 토양오염물질의 실내흡입 위해성평가)

  • Jung, Jae-Woong;Nam, Taekwoo;Nam, Kyoungphile
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.4
    • /
    • pp.51-65
    • /
    • 2015
  • Indoor inhalation of vapors intruded into buildings is an important exposure pathway in volatile organic compoundscontaminated sites. Site-specifically measured indoor air concentration is preferentially used for risk assessment. However, when indoor air concentration of VOC is not measured, the indoor air concentration needs to be estimated from soil concentration or measured soil gas concentration of the VOC. Some risk assessment guidance (e.g., Korea Ministry of Environment (KMOE) and American Society for Testing and Materials (ASTM) International guidance) estimate the indoor air concentration from soil concentration while other guidances (e.g., United States Environmental Protection Agency (USEPA) and Dutch National Institute for Public Health (RIVM)) estimate it from measured soil gas concentration. This study derived indoor inhalation risks of intruded benzene in two benzene-contaminated residential areas with four different risk assessment guidances (i.e., KMOE, USEPA, ASTM, and Dutch RIVM) and compared the derived risks. The risk assessment results revealed that indoor air estimation approach from soil concentration could either underestimate (when the contaminant is not detected in soil) or overestimate (when the contaminant is detected in soil even at negligible concentration) the indoor air inhalation risk. Hence, this paper recommends to estimate indoor air concentration from soil gas concentration, rather than soil concentration. Discussions about the various indoor air concentration estimation approaches are provided.

Distribution of Arsenic Fraction in Soil Around Abandoned Mining Area and Uptake by Rice

  • Kim, Hyuck-Soo;Go, Woo-Ri;Kang, Dae-Won;Yoo, Ji-Hyock;Kim, Kye-Hoon;Kim, Won-Il
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.391-396
    • /
    • 2015
  • Arsenic (As) contamination of agricultural soils resulting from mining activity has caused major concern due to the potential health risk. Therefore the current study was carried out to investigate the relationship between fractionation of As in soil and rice uptake and to provide a basic information for adequate management of As contaminated agricultural soil. Twenty agricultural soils and rice affected by the abandoned mining sites were collected. Soil chemical properties and As concentrations (total and sequential extracted) in soils were determined and As concentrations in polished rice were analyzed. The average concentration of As in non-specifically adsorbed (F1), specifically adsorbed (F2), amorphous hydrous oxides of Fe and Al (F3), crystalline hydrous oxides of Fe and Al (F4) and residual phase (F5) were 0.08, 1.38, 10.34, 3.26 and $10.98mgkg^{-1}$, respectively. Both soil pH and available phosphorus were positively correlated with the concentrations of As in F1 and F2. These results indicate that increasing the soil pH and available phosphorus can significantly increase the easily mobile fractions of As (F1 and F2). The average concentration of As in polished rice was $0.09mgkg^{-1}$. The concentrations of As in F1 and F2 showed a positive correlation with the concentrations of As in polished rice. Therefore soil pH and available phosphorus affect the distribution of As fractionation in soils and thus affect As bioavailability.

A Study on the Assessment of the Contamination by Acid Mine Drainage in Abandoned Coal Mines (국내폐탄광의 산성폐수 오염도 평가에 관한 연구)

  • 최우진
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.3
    • /
    • pp.31-38
    • /
    • 1997
  • Temporal and spatial comparisons of acid mine drainage contaminated waters are difficult because of the complex physico-chemical nature of the pollutant. In the present study, an acid mine drainage index has been developed and evaluated for the assessment of surface waters. AMD index is calculated using a modified arithmetic weighted index using seven parameters which are most indicative of AMD contamination, i. e. pH value, sulphate, iron, zinc, aluminum, copper and manganese. Weighting is used to express the relative indicator value of each parameter. The proposed AMD index is used to quantify contamination from acid mine drainage over ten different old mine sites and assess the degree of impact on surface on surface waters. As a result of AMD evaluation, the Sukbong Mine located near the Moonkyung province showed lowest AMD value indicating the worst acid mine drainage quality. In overall, Youngdong mine sites showed higher contaimination compared to the other mine sites including Youngsuh, Choongbu, Suhbu and Nambu area.

  • PDF

Reuse and Remediation of Closed Landfill in Korea

  • Shin, Chan-ki
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2002.04a
    • /
    • pp.91-99
    • /
    • 2002
  • A recent survey investigated that there were over one thousand un-controlled closed landfills(1,072 sites) in Republic of Korea. Most of these landfills were constructed before 1986. Waste management act were not promulgated at that time, so they usually do not have dranage system and leachate treatment facility. Also, considerable attention has been received to landfill leachate pollution, leachate has an adverse impact on the surrounding environment such as soil, groundwater, and water supply source. According to the result of survey for closed landfill management, it was reported that 875 sites out of 1,072sites(81.6%) have no leachate treatment facility and 630 sites out of 1,072sites(58.7%) have been used for farm lands and residence. Consequently it is hard to do postclosure care continuously in most of cases and these uncontrolled landfills have contaminated farm lands and residence. The average age of these landfills are ranged mostly between 2 to 15 years. Much time and advanced technology are needed to remediate these uncontrolled landfills, therefore the survey for present status of closed landfill sites is required and suitable treatment processes should be prepared. With this point of view, We has been investigated to find out the present status of closed landfill, problems of post management and discussed plans for remediation and reuse. Remedial actions of un-controlled landfill have been carried out the many cities since 1997 upto now. Most frequently applied technology were reuse after excavation and there were several cases to capping in the surface of landfill and to construct subsurface barriers. It is considered that landfills in use have a possibility not to be controlled because of inadequate construction and improper management. Therefore remediation of uncontrolled landfills and recovery technology should be develop continuously Especially, it has been expected that resource technology of landfill gas as a energy has some advantages in controlling odors in the site area and accelerating stabilization of landfills with the energy.

  • PDF

Assessment of Environmental Pollution for Streams of Andong City in Gyeongbuk Province Using Invertebrate Biomarker and Chemical Residual Analysis (무척추동물 생체지표와 화학잔류량 분석을 통한 경북 안동지역내 하천들의 환경오염 평가)

  • Ryoo Keon-Sang;Choi Jong-Ha;Kim Young-Gyun;Cho Sung-Hwan;Lee Hwa-Sung
    • Journal of Environmental Science International
    • /
    • v.14 no.6
    • /
    • pp.583-596
    • /
    • 2005
  • Samples of water, soil, and sediment were taken from 10 streams of Andong city in Gyeongbuk province in October 2004. To assess the degree of environmental pollution for each stream site, the chemical analyses of pollutants such as T-N, T-P, COD, heavy metal, organophosphorous and organochlorine pesticides, and dioxin-like PCB congeners were implemented using the standard process tests or the U. S. EPA methods. In addition, biological assessment using insect immune biomarkers was conducted on the same environmental samples to complement the chemical assessment. Except Waya stream (T-N; 2.91 mg/L, T-P; 0.16 mg/L, COD; 14.0 mg/L) with above the environmental quality standards, the T-P and COD concentrations of 9 sites are relatively low. The contents of Pb and Cd in samples taken from each stream were much lower than environmental quality standards. However, in comparison with soil samples of other streams, several times higher concentrations of Pb and Cd were found in locations at Mi, Gilan, Yeonha, and Waya stream sites. Dementon-S-methyl, diazinon, parathion, and phenthoate compounds among organophosphorous pesticides were detected as concentrations of ppb levels, respectively, from soil samples collected in the vicinity of Gilan, Mi, Norim, and Waya stream. On the other hand, 16 organochlorine pesticides and 12 dioxin-like PCB congeners selected in this study were not found in all samples. In particular, considering significant disrupting effects of Waya stream's samples on insect immune capacity, this stream seems to be contaminated with investigated and/or univestigated pollutants in this study.

Evaluation of the Concentration Distribution and the Contamination Influences for Beryllium, Cobalt, Thallium and Vanadium in Soil Around the Contaminated Sources (오염원 인근 토양 중 베릴륨(Be), 코발트(Co), 탈륨(Tl), 바나듐(V)의 농도분포 및 오염영향 평가)

  • Lee, Hong-gil;Noh, Hoe-Jung;Yoon, Jeong Ki;Lim, Jong-hwan;Lim, Ga-Hee;Kim, HyunKoo;Kim, Ji-in
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.4
    • /
    • pp.48-59
    • /
    • 2018
  • Beryllium (Be), cobalt (Co), thallium (Tl) and vanadium (V) are candidates of 21 priority soil pollutants in Korea. The distribution of their concentration in soils from three contamination sources including industrial, roadside and mining areas was investigated. Concentrations of the metals were evaluated quantitatively using pollution indices and the fractionation of metals was conducted using modified SM&T (Standards Measurements and Testing programme) sequential extraction. Concentrations of the metals for all samples from industrial and roadside soils were within the range of natural background levels, while some of Be in soils from abandoned mines exceeded that the range. Enrichment Factor (EF) and Nemerow Integrated Pollution Index (NIPI) for Be, Co, Tl and V showed that there are effects or possibilities of anthropogenic activities. Pollution Load Index (PLI) analyses indicated all investigated sites needed further monitoring. The results of sequential extractions indicated mobile fractions (F1+F2) of Be, Tl and V were below 30% except some of Co in soil, which implies their low mobility to neighboring environment media. Variable tools like sequential extraction, comparison with background/actual concentration and pollution indices, as well as aqua regia extraction should be considered when evaluating Be, Co, Tl, V in soil.

A Study on Soil Contamination of Children's Parks within the Gyeonggi-do Province Area (경기도내 어린이공원의 토양오염실태 연구)

  • Kim, Woongsoo;Song, Ilseok;Shin, Jonghyun;Oh, Cheonhwan;Kim, Eunah;Kim, Keugtae;Kim, Hyunja;Kim, Jongsu;Choi, Yunho
    • Journal of Environmental Health Sciences
    • /
    • v.43 no.3
    • /
    • pp.233-239
    • /
    • 2017
  • Objectives: The pollution status of heavy metals within the soil was investigated with an aim to establishing a sustainable soil environment within parks and amusement facilities installed in urban areas of Gyeonggi-do Province. Methods: As sampling sites, 14 locations were selected from a city with a number of factories near a residential area, a residential area, and a children's park in a city with mixed green areas. Seven kinds of heavy metals, including Cd, Pb, and Hg, and the pH of soil were analyzed three times by inductively coupled plasma optical emission spectroscopy (ICP-OES) and atomic absorption spectrometer (AAS). Results: In this study, the pH of the samples from the residential park and industrial park showed 5.7-6.5 and 5.9-7.0, respectively. The overall mean concentration (mg/kg) of heavy metals was Zn (132.8), Ni (73.0), Cu (47.4), Pb (35.9), As (4.84), Cd (0.39), and Hg (0.07), indicating that these concentrations of heavy metals were lower than those for the area 1 standard of soil pollution concern criteria. In addition, the sampling sites in the residential area and the industrial area also showed the same tendency for concentration distribution. Conclusions: We found that the soil pollution class (SPC) of some spots were over 200, which are third and fourth classes. In order to manage a sustainable soil environment in a city park, it is suggested that local governments, the management bodies for these parks, need to manage, supervise, and investigate soil pollution and quickly replace contaminated soil.

Improvement of Pilot-scale Electrokinetic Remediation Technology for Uranium Removal (우라늄 제거를 위한 실험실 규모 동전기 장치의 개선 방안)

  • Park, Hye-Min;Kim, Gye-Nam;Kim, Seung-Soo;Kim, Wan-Suk;Park, Uk-Ryang;Moon, Jei-Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.2
    • /
    • pp.77-83
    • /
    • 2013
  • The original pilot-scale electrokinetic equipment suitable to soil contamination characteristics of Korean nuclear facility sites was manufactured for the remediation of soil contaminated with uranium. During the experiment with the original electrokinetic equipment, many metal oxides were generated and were stuck on the cathode plate. The uranium removal capability of the original electrokinrtic equipment was almost exhausted because the cathode plate covered with metal oxides did not conduct electricity in the original electrokinetic equipment. Therefore, the original electrokinetic equipment was improved. After the remediation experience for 25 days using the improved electrokinetic remediation equipment, the removal efficiency of uranium from the soil was 96.8% and its residual uranium concentration was 0.81 Bq/g. When the initial uranium concentration of soil was about 50 Bq/g, the electrokinetic remediation time required to remediate the uranium concentration below clearance concentration of 1.0 Bq/g was about 34 days. When the initial uranium concentration of soil was about 75 Bq/g, the electrokinetic remediation time required to remediate below 1.0 Bq/g was about 42 days. When the initial uranium concentration of soil was about 100 Bq/g, the electrokinetic remediation time required to remediate below 1.0 Bq/g was about 49 days.

Examination of Soil Contamination Status and Improvement Strategies within Urban Development Projects (도시개발사업 내 토양 오염 현황과 개선 방안 고찰)

  • Heo, Sujung;Lee, Dong-Kun;Kim, Eunsub;Jeon, Seong-Woo;Jin, Zhiying
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.27 no.3
    • /
    • pp.45-56
    • /
    • 2024
  • Heavy metals emitted from urban development do not decompose in the soil and remain for long periods, continually impacting the environment. Since the mid-1990s, there has been increasing societal concern in South Korea regarding soil contamination, prompting various legislative revisions to reduce pollution. This study utilizes the Environmental Impact Assessment Support System (EIASS) to investigate projects in the metropolitan area that have exceeded the Ministry of Environment's soil contamination concern levels from 1989 to 2022 and to examine improvements in the environmental impact assessment (EIA) process. The results reveal that the average concentrations of nine contaminants-cadmium (Cd), copper (Cu), arsenic (As), mercury (Hg), lead (Pb), hexavalent chromium (Cr6+), zinc (Zn), nickel (Ni), and fluoride (F)-have all increased over the years. Among these, Zn had the highest relative proportion, with 37.5% of the 40 sites exceeding environmental concern levels. Investigation of 19 specific projects at these exceedance sites showed that only 7 had documented analyses of contamination causes and remediation plans, and just one had contracted additional remediation services, though results from these efforts were found to be lacking. Furthermore, since 2019, a significant proportion of these sites were involved in residential developments, likely due to government initiatives in new city development and extensive housing supply plans. This research emphasizes the importance of public disclosure of the processes and outcomes of remediation efforts on historically contaminated soils prior to project development. It discusses improvements to the EIA by reviewing current legislation and international examples. The findings of this study are expected to heighten public awareness about heavy metal contamination and enhance transparency in soil remediation efforts, contributing to sustainable environmental management and development.

Impact of Livestock-production Wastewater on Water Pollution (가축분뇨수의 무단방류가 샛강오염에 미치는 영향)

  • Choe, Hong-Rim;Son, Jae-Ho;Ryu, Sun-Ho
    • Journal of Korean Society of Rural Planning
    • /
    • v.2 no.1
    • /
    • pp.69-78
    • /
    • 1996
  • Environmental impact assessment survey reflecting farmers` opinion on the residence and production space in rural settlement area by ORD showed that more than 86% of respondents thought their reservoirs and waterways (small rivers) were getting seriously contaminated primarily by garbage and livestock manure. A typical rural settlement unit was taken to assess the impact of improper management of livestock manure in the farms on the water quality of small river flowing down along the villages where swine and dairy farms were situated in Daejook 2, 3-ri, Seolseong-myun, Icheon-gun. Nitrogen compounds such as NO$_3$-N, NO$_2$-N, NH$_3$-N, and phosphorus compound H$_x$PO$_4$, DO, BOD$_5$, COD, and microbial density were analyzed to evaluate water quality at five test sites designated along the water stream. Tests showed. for example, BOD$_5$ at site 4 was average 9.2mg/l which was about 3~8 times higher than that of observation site 2 and 3, at which most livestock houses were situated. This is a clear evidence that the nutrients of livestock manure illegally discharged to small river can lead to an eutrophication of the river at downstream. A soil absorption system with aeration could be one of alternatives to treat the contaminated wastewater by livestock manure. The place at downstream, inbetween observation site 1 and 2, could be the best construction site for the treatment facility from the standpoint of the overall treatment efficiency, An enclosed composting system can also be regarded as a good alternative for treatment of the sludge which is the by-product of the soil absorption system operation.

  • PDF