• Title/Summary/Keyword: Soil-bentonite

Search Result 179, Processing Time 0.017 seconds

Adsorption of Heavy Metals on Organobentonite (유기 벤토나이트에 의한 중금속 흡착특성)

  • 유지영;최재영;박재우
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.168-171
    • /
    • 2001
  • Organobentonite modified with hexadecyltrimethylammonium (HDTMA) was used to quantify an adsorption of heavy metals. Based on preliminary experiments, optimal soil/solution ratio, a range of pH, and electrolyte were selected. Adsorption experiments of cadmium and lead were conducted to quantify an adsorption selectivity to bentonite and organobentonite. Adsorption of cadmium and lead to bentonite was increased with increasing a soil/solution ratio. Adsorption of cadmium and lead to bentonite was increased with increasing a soil/solution ratio. Adsorptions of heavy metal to organobentonite were slightly reduced relative to bentonite. This study used the principle of hard-soft-acid-base (HBAB) to interpretate an adsorption mechanism. Because of competition between cadmium and lead. adsorption of cadmium and lead was reduced in mixture of heavy metals. Adsorption selectivity.

  • PDF

Remediation of PCE-contaminated Groundwater Using Permeable Reactive Barrier System with M0M-Bentonite (MOM-Bentonite 투수성반응벽체를 이용한 PCE로 오염된 지하수의 정화)

  • Chung, Sung-Lae;Lee, Dal-Heui
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.4
    • /
    • pp.73-80
    • /
    • 2012
  • The objectives of this research were to study the applicability and limitations of permeable reactive barrier (PRB) for the removal of tetrachloroethylene (PCE) from the groundwater. PRB column tests were conducted using reactive material with Moringa Oleifera Mass - Bentonite (Mom-Bentonite). Most of the PCE in the groundwater was degraded and/or captured (sorpted) in the zone containing activated material (MOM-Bentonite). The removal rate of PCE from the groundwater was 90% and 75% after 30 days and 180 days, respectively. The effect of micro-organisms on the long-term permeability and reactivity of the barrier is not well understood. MOM-Bentonite PRB system in this research has the potential to be developed into an environmentally and economically acceptable technology for the in situ remediation of PCE-contaminated groundwater.

A Study for Permeability as Mixing Ratio at Bentonite-mixed Soil (벤토나이트 혼합토의 혼합비에 따른 투수성 연구)

  • Ju Jae-Woo;Suh Kyeh-Won;Park Jong-Beom
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.1
    • /
    • pp.45-52
    • /
    • 2006
  • A theoretical equation, from which we can get a suitable ratio of bentonite at bentonite-mixed soil, was derived for desigri of the impermeable condition. Bentonite is a soil with great expansion property and it has the permeability lower than $1\times10^{-7}cm/sec$ in spite of its maximum expansion state. Accordingly if the void of soil is filled with the liquid of bentonite, water will flow only through the veid of bentonite liquid. And the permeability of bentonite-mixed soil will always satisfy the condition as impermeable zone. However, because it is very difficult to mix uniformly bentonite with soil, it is thought that the actual mixing ratio fur the impermeable zone will be grater than that by theoretical equation. Permeability tests were performed to check the equation and a modified equation was suggested from the experimental results.

Development of Bentonite Composite Liners for Landfill Sites (폐기물매립지 침출수 누출방지용 벤토나이트 복합라이너 개발)

  • 최우진;이원영;진성기;하헌중;김두영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1999.10a
    • /
    • pp.73-76
    • /
    • 1999
  • Soil-bentonite mixtures are frequently used as impervious for waste disposal sites. In the present work, bentonite composite liner systems(BCL) have been developed by utilizing Korean zeolitic bentonites. The geomechanical properties of the liner systems, such as strength, hydraulic conductivity, etc. have been studied. The laboratory and field test results are also be presented.

  • PDF

Applicability of Electrical Conductivity Monitoring Technique for Soil-bentonite Barrier (흙-벤토나이트월에 대한 전기전도도 모니터링 기법의 적용성 평가)

  • Oh, Myoung-Hak;Yoo, Dong-Ju;Kim, Yong-Sung;Park, Jun-Boum
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.7
    • /
    • pp.47-55
    • /
    • 2007
  • In this study, applicability of electrical conductivity monitoring technique for containment barrier such as soil-bentonite wall was evaluated. Laboratory tests including permeability tests and column tests were performed to understand variations in electrical conductivity at different bentonite contents, hydraulic conductivities, and heavy metal concentrations. The electrical conductivity of compacted soil-bentonite mixtures was found to increase proportionally with bentonite content. Accordingly, the hydraulic conductivity of compacted soil-bentonite mixtures which decreases linearly with increasing bentonite content was found to have an inversely proportional relationship with the electrical conductivity. In column tests, electrical conductivity breakthrough curves and concentration breakthrough curves were simultaneously obtained. These results indicated that electrical conductivity measurement can be an effective means of detecting heavy metal transport at the desired locations within barriers and verifying possible contaminant leakage. Experimental results obtained from this study showed that the electrical conductivity measurement can be a promising tool for monitoring of containment barrier.

Study of Permeability of Bentonite Mixtured Soil (벤토나이트 혼합토의 투수성에 관한 연구)

  • Kim, Sung-Hwan;Oh, Young-In
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.805-812
    • /
    • 2009
  • Permeation water resulting in the reclaimed land of waste can possibly cause the second pollution, such as the underground water and environmental pollution. Accordingly, Liner layer has been installed in the reclaimed land of waste to block and purify permeation water and prevent this second pollution. The material used as Liner layer is the one for water resistance and that of less than permeability coefficient $1{\times}10^{-7}cm/sec$ is widely used. As it is very difficult to secure in bulk this natural clay with low permeability around the field, the suitable way to secure low permeable material is that we use blend with good watertighness by mixing it with natural soil which is spread in the site. While this mixed soil which can resist water is commonly used in the site, bentonite mixed soil which is widely used as Liner layer in the reclaimed land of waste is recognized in Liner and durability. In this study, the engineering characteristics of soil-bentonite mixed liner are investigated using the laboratory hydraulic conductivity and uni-axial strength tests. The soil used for the liner is the clay soil located near the site. Mixing ratio of the bentonite which satisfies the requirement of hydraulic conductivity is determined and the optimum mixing ratio of bentonite is recommended for the landfill. After the mixed liner is constructed using the optimum mixing ratio of bentonite, the block samples of the constructed liner are obtained and the strength tests were performed. The hydraulic and strength properties of the liner for construction of the waste landfill were both satisfactory.

  • PDF

Water Diffusion and Resaturation in Unsaturated Compacted Bentonite (불포화 압축 벤토나이트에서의 수확산 및 재포화)

  • 고은옥;이재완;조원진;현재혁;전관식
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.11a
    • /
    • pp.216-220
    • /
    • 1998
  • Experimental studies were carried out to investigate water diffusion in unsaturated compacted bentonite for a landfill of hazardous wastes. Water content distributions were measured and water diffusion coefficients were determined when the dry densities of compacted bentonite were in the range of 1.4 - 1.8 g/㎤. Resaturation times were also calculated to analyze the ability of the compacted bentonite to retard water movement. The results obtained were as follows: Diffusion model described properly the water migration in unsaturated compacted bentonite. Water diffusion coefficients ranged from 4.30$\times$10$^{-6}$ $\textrm{cm}^2$/sec to 1.93$\times$10$^{-6}$ $\textrm{cm}^2$/sec, and decreased with increasing the dry density. The dry density of compacted bentonite was found to be an important factor to control the resaturation time by water. This study suggests that the domestic compacted bentonite should be a good barrier material against water movement in a landfill of hazardous wastes.

  • PDF

Factors Affecting the Electrical Properties of Bentonite Slurry (벤토나이트 슬러리의 전기적 특성에 대한 영향인자 분석)

  • Yoo, Dong-Ju;Oh, Myoung-Hak;Kim, Yong-Sung;Park, Jun-Boum
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.10
    • /
    • pp.21-32
    • /
    • 2006
  • Factors affecting the electrical properties of bentonite slurry were identified and electric conduction mechanism in slurry was examined. Electrical conductivity of bentonite and soil-bentonite slurry linearly increases with the bentonite content. Test result indicated that the change In electrical conductivity of slurry was mainly caused by dissolved cations from bentonite particles. The relationship between electrical conductivity and bentonite content was affected by the initial electrical conductivity of slurry solution and fine content in soil-bentonite mixture. Such influences were evaluated and the calibrated relationships were suggested. Based on the suggested relationship between electrical conductivity and bentonite content, bentonite content in various bentonite and soil-bentonite slurry can be quantitatively evaluated by using electrical conductivity measurement method.

A Study on Soil-Bentonite Mixed Liner Properties for Waste Landfill (폐기물매립지의 흙-벤토나이트 혼합차수층 특성에 관한 연구)

  • 홍성길;한봉수;장연수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.597-604
    • /
    • 2001
  • In this study, the engineering characteristics of soil-bentonite mixed liner are investigated using the laboratory hydraulic conductivity and strength tests. The soil used for the liner is clayey silt in the site and the weathered granitic soil located near the waste landfill studied. Mixing ratio of the bentonite which satisfies the requirement of hydraulic conductivity is determined and the optimum mixing ratio of betonite is recommended for the landfill. After the mixed liner is constructed, the block samples of the constructed liner are obtained and the properties of interest satisfy the requirements of the liner of the landfill.

  • PDF