• Title/Summary/Keyword: Soil uptake

Search Result 797, Processing Time 0.029 seconds

Influence of Soil Texture and Bulk Density on Root Growth Characteristics and Nutrient Influx Rate of Soybean Plant (토성(土性)과 용적밀도(容積密度)가 대두(大豆)의 뿌리 생장특성(生長特性)과 양분흡수기능(養分吸收機能)에 미치는 영향(影響))

  • Jung, Yeong-Sang;Lim, Hyung-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.22 no.3
    • /
    • pp.221-227
    • /
    • 1989
  • This study was conducted to understand the influence of soil compaction on root growth and nutrient uptake characteristics of the soybean roots grown in two soils with different texture. Tap root elongation was measured on young seedling grown in cores compacted to different bulk densities of 1.2, 1.4 and $1.6/cm^3$ with different soil water retention in laboratory. The soil used were Samgag sandy loam and Baegsan loam soils. The wet and dry weight, total length, average radius and total surface area of roots were measured on soybean plants grown in 1/5000 a Wagner pots compacted to different bulk density of 1.2 and $1.4g/cm^3$. The nutrient uptake of soybean shoot was measured and evaluated with the unit surface area of roots at the 7th, 17th and 27th days after germination. The results were as follows: 1. The tap root elongation rate was faster in the loam soil with low bulk density than in the sandy loam soil with high bulk density. The elongation rates were remarkedly decreased when soil water was lower than the retention of 4 bars in loam soil and that of 1 bars in sandy loam soil. 2. Tap root elongation rate sharply decreased as increased soil strength higher than $2kgf/cm^2$ measured by ELE penetrometer showing curvillinear regression. However, it was low regardless of soil strength when soil water retention was 10 bars in sandy loam soil. 3. From the pot experiment, the total length of roots were longer in loam soil than in sandy loam soil and was longer in the soils with lower bulk density. The average radius of fine roots grown in sandy loam soil was larger than that grown in loam soil. The total surface area of roots was greater in the loam soil with low bulk density than in the sandy loam soil with high bulk density as the total length of roots. 4. The amounts of nutrient uptake by soybean shoots were greater in loam soil primarily due to more production of dry matter than in sandy loam soil. The nitrogen influx rates through the unit surface area were 597 to $753nmoles/day-cm^2$ in loam soil and 222 to $365nmoles/day\;cm^2$ in sandy loam soilshowing higher value in higher bulk density. The potasium influx rates were 99 to $175nmoles/day-cm^2$, and those of phosphate were 26 to $46nmoles/day\;cm^2$. Those of Ca and Mg were 175 to 246 and 163 to $205nmoles/day\;cm^2$. The difference in nutrient influx rates between bulk densities of these elements were lower than that of nitrogen.

  • PDF

Comparing Bioavailability of Cadmium and Arsenic in Agricultural Soil Under Varied pH Condition

  • Oh, Se Jin;Kim, Sung Chul;Ok, Yong Sik;Oh, Seung Min;Lee, Bup Yeol;Lee, Sang Hwan;Yang, Jae E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.1
    • /
    • pp.57-63
    • /
    • 2015
  • Bioavailability of cadmium (Cd) and arsenic (As) can be different depending on soil pH. For this reason, main purpose of this research was to compare bioavailability of Cd and As in agricultural field under varied soil pH and different extractants. Bioavailable fraction of Cd and As in soil was extracted with $CaCl_2$, $NaNO_3$, DTPA, EDTA, and low molecular weight organic acids (LMWOAs). Soil samples and cultivated crops were collected at the range of soil pH 4.5-8.5 and correlation analysis was conducted between bioavailable fraction of Cd and As in soil and total concentration of Cd and As in crops. Results showed that concentration of Cd and As in acidic soil was ranged $0.002-0.462mg\;kg^{-1}$ and $0.041-4.903mg\;kg^{-1}$ respectively. In alkaline condition, concentration of Cd and As were ranged $0.006-0.351mg\;kg^{-1}$ and $0.039-2.807mg\;kg^{-1}$ respectively. Comparing bioavailable fraction of Cd and As in acidic and alkaline soil condition, higher concentration was measured in acidic condition. Similarly, higher average concentration of Cd and Asin crops was observed in acidic condition (0.398 and $0.751mg\;kg^{-1}$ respectively) than alkaline condition (0.248 and $0.264mg\;kg^{-1}$). Among different extractants, LMWOAs method showed higher correlation ($r^2=0.545$) for Cd in acidic condition indicating that LMWOAs method could be applied for evaluating bioavailability of Cd in acidic soil. However, no high correlation was observed for As in both acidic and alkaline condition. Overall, bioavailable fraction of Cd and As can be higher in acidic condition of soil than alkaline condition resulting higher uptake of Cd and As from soil to crops. Therefore, efficient best management practice (BMPs) for Cd and As in acidic soil should be conducted for minimizing uptake of Cd and As into crops.

Case Study: Operation of the Juam Constructed Wetland for Effluent from a Sewage Treatment Plant and Diffuse Pollution for Two Years (하수종말처리장 방류수와 비점오염원 처리를 위한 주암호 인공습지 2년 운영 사례)

  • Jung, Yong-Jun
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.6
    • /
    • pp.1031-1037
    • /
    • 2006
  • In order to improve water quality of the Juam Lake, a constructed wetland was implemented and operated for 2 years with the effluent of sewage treatment plant and diffuse pollutant discharged from agricultural area. During the summer season, average removal efficiencies for BOD and SS were 15.8% and 39.4%, respectively. Due to the mixed effect of vegetation, soil microbes and sediments, the higher nutrient removal efficiencies were obtained: average T-N and T-P removal efficiencies were 64.2% and 71.7%, respectively. The concentration of sediment was increased initially, and maintained constant throughout monitoring period. The highest nitrogen and phosphorus uptake were observed in Phragmites japonica. The nitrogen uptake was estimated as 0.235 DW mg/g while phosphorus uptake was estimated as 2.059 DW mg/g.

Properties and Disalinization of Salt-affected Soil (간척지 염해토양의 특성과 제염기법)

  • Son, Jae-Kwon;Song, Jae-Do;Shin, Won-Tae;Lee, Su-Hwan;Ryu, Jin-Hee;Cho, Jae-Young
    • Korean Journal of Organic Agriculture
    • /
    • v.24 no.2
    • /
    • pp.273-287
    • /
    • 2016
  • Accumulation of excessive salt in Reclaimed coastal tidelands can reduce crop yields, reduce the effectiveness of irrigation, degradation of soil structure, and affect other soil properties. These salts has shown to cause specific ions in the plant over a period of time leads to ion toxicity or ion imbalance and a continuous osmotic phase that prevents water uptake by plants due to osmotic pressure of saline soil solution. This review focuses on the characteristics of salt-affected soils, mechanisms of salt-tolerance plants, desalinization technology, and soil management to maintain sustainable agro-ecosystem in salt-affected soils.

Phenanthrene Uptake by Surfactant Sorbed on Activated Carbon (활성탄에 흡착된 계면활성제에 의한 Phenanthrene 흡착)

  • Ahn, Chi-Kyu;Woo, Seung-Han;Park, Jong-Moon
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.2
    • /
    • pp.1-11
    • /
    • 2008
  • Phenanthrene uptake by surfactant sorbed on activated carbon was investigated to recycle of surfactant in washed solution for contaminated soil. The partitioning of phenanthrene to the activated carbon coating with Triton X-100 as a surfactant was also evaluated by a mathematical model. Phenanthrene-contaminated soil (200 mg/kg) was washed in 10 g/L of surfactant solution. Washed phenanthrene in solution was separated by various particle loadings of granular activated carbon through a mode of selective adsorption. Removal of phenanthrene was 99.3%, and surfactant recovery was 88.9% by 2.5 g/L of granular activated carbon, respectively. Phenanthrene uptake by activated carbon was greater than that of phenanthrene calculated by a standard model for a system with one partitioning component. This is accounted for enhanced surface solubilization by hemi-micelles adsorbed onto granular activated carbon. The effectiveness factor is greater than 1 and molar ratio of solubilization to sorbed surfactant is higher than that of liquid surfactant. Results suggest that separation of contaminants and surfactants by activated carbon through washing process in soil is much effective than that of calculated in a theoretical model.

Uptake and Accumulation of Soil Strontium-90 by Peanut and Sesame (토양 strontium-90의 땅콩과 참깨에 의한 흡수 및 축적)

  • Choi, Yong-Ho;Jo, Jae-Seong
    • Korean Journal of Environmental Agriculture
    • /
    • v.15 no.1
    • /
    • pp.11-18
    • /
    • 1996
  • A greenhouse experiment on the Sr-90 uptake by peanut and sesame was conducted through pot cultures on a sandy loam soil of pH 6.35 treated with Sr-90 in 5.2 and 31.2Bq per gram. The rate of Sr-90 transfer from soil to each plant part, the ratio of Sr-90 concentration in the part to the concentration in soil, and the patterns of their temporal changes were not, on the whole, significantly different between the two treatments. About 0.7 and 0.5 % of Sr-90 in soil transferred to all the mature plants of peanut and sesame, respectively, with the radioactivities in their roots not counted. Only 4% and less than 15% of Sr-90 absorbed by peanut and sesame, respectively, translocated to their seeds. Both crops showed the highest Sr-90 concentration in the leaf and the lowest in the seed. At maturities, the concentration ratio in dry seed was 0.4 in peanut and 3.3 in sesame and that in dry leaf was 12.5 and 10.7, respectively. Sr-90 concentrations in the top 15 cm soil after harvests averaged about 80 % of the concentrations at starting. Sr-90 uptake resulted in neither growth inhibition nor yield decrease.

  • PDF

Influence of animal wastes on the soil fertility parameters and the growth of corn (Zea mays L.) (축산폐기물(畜産廢棄物)의 이용(利用)에 관(關)한 연구(硏究) : 가축분뇨(家畜糞尿)가 토양화학성(土壤化學性) 및 옥수수 생육(生育)에 미치는 영향(影響))

  • Kim, Jeong-Je;Hong, Byong-Ju;Goh, Yong-Gyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.24 no.2
    • /
    • pp.137-143
    • /
    • 1991
  • This research was conducted to investigate the treatment effects of the experimental product of an oxidatively treated animal wastes such as feces of cow and pig on the growth and yield of corn, soil fertility parameters, nutrient uptake by corn, and in situ dry matter digestibility. The results are summarized as follows. (1) Growth of corn was favored by treatment of the experimental products as compared to the control. Highest yields were obtained at treatment levels of 2,000 and 2,500kg/10a for the experimental products derived from cow and pig feces, respectively. (2) The contents of soil organic matter were increased 7-41% and 4-60% with treatments of experimental products from cow and pig feces, respectively, as compared to the control. The available soil phosphorus levels were increased significantly with the treatments. Treatment of product from the cow feces resulted in a slight increase of the potassium adsorption ratio (KAR). (3) No significant difference was observed in uptake of total nitrogen and phosphorus between the treatments and the control. Uptake of cation by corn was in the order of $K_2O$ >CaO>MgO. (4) In situ dry matter digestibility ratio was increased with Incubation time. However, no significant difference in digestibility was detected for the corn samples produced by treating different levels of the experimental products.

  • PDF

Uptake Patterns of N and P by Reeds (Phragmites australis) of Newly Constructed Shihwa Tidal Freshwater Marshes (시화지구 인공습지에서 갈대에 의한 질소 및 인 흡수)

  • 노희명;최우정;이은주;윤석인;최영대
    • The Korean Journal of Ecology
    • /
    • v.25 no.5
    • /
    • pp.359-364
    • /
    • 2002
  • This study was conducted to examine the seasonal pattern of N and P uptake by reeds (Phragmites australis) planted in newly constructed Shihwa tidal freshwater marshes. Reed and soil samples were collected from the wetland periodically from June 2000 to May 2002. Reed samples were analyzed for dry weight and content of N and P Soil organic matter content and salinity were also determined. Dry matter content of reed increased during the growing season but decreased in the fall and winter. However, this seasonal pattern was not so evident in the second year. In particular, throughout the measurement period, dry matter content of reed was lowest at a site showing high soil salinity. Regression analyses between dry matter content of reed and soil EC(1:5) suggested that dry matter content per unit square meter would decrease by 1.5 kg with every 1 dS m/sup -1/ increase in soil EC(1:5). The amount of N and P assimilated by reed significantly decreased from the fall and was lowest in the spring. Net decrease in N content from reed during the fall and next spring was calculated as 34.5 and 24.6 g m/sup -2/ in the first and second years, respectively, while the corresponding P loss was 4.0 and 1.8 g m/sup -2/. Soil organic mailer content increased in the fall and winter, but decreased in the spring and summer. The results of this study suggested that the removal of N and P by reed would be considerable during the growing season but the nutrients taken up by reeds would return as detritus to the marshes in the fall and winter. Based on the results of the study, therefore, the harvest of the reed at the latter part of the growth would be recommended to prevent further water quality degradation. However, the long-term effects of reed harvest needs further study.

Effect of Nitrogen and Potassium Fertilizer Types on Growth Responce of Onions Under Continuous Cropping (양파의 연작지(連作地)에서 질소(窒素) 및 가리비종별(加里肥種別) 생육반응(生育反應))

  • Shin, Bog-Woo;Yoo, Chul-Hyun;Lee, Sang-Bog;Joeng, Ji-Ho;Han, Sang-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.3
    • /
    • pp.271-276
    • /
    • 1998
  • This experiment was carried out to investigate the changes on nutrient uptake and yields of onion when it was applied with urea and ammonium sulfate as nitrogen fertilizer types; potassium chloride and potasssium sulfate as potassium fertilizer types and lime requirement and phosphorus absorption coefficient controlled 5% as soil improvement index. The variety of onion used was CheonJuHwang and the soil used was Yonggye series in the Jeonnam Muan area. The amounts of N, P and K uptake were higher in the mixed application plot of ammonium sulfate and potassium sulfate than in the plot of urea or potassium chloride. The sulfate content of soil was higher in the period of plant growth than in the harvest stage. The sulfate content of plant was highest in the harvest stage and this content was higher in the stem and in the leaf than in the bulb. The sugar content of onion was 7.43~8.23 Brix content was higher in the large bulb than in the small bulb. The weight of dry matter and the rate of good quality were high in the mixed application plot of ammonium sulfate and potassium sulfate, so the yield of onion was increased 2~6% compared with control.

  • PDF

Study for Phytostabilization using Soil Amendment and Aster koraiensis Nakai in Heavy Metal Contaminated Soil of Abandoned Metal Mine

  • Jung, Mun-Ho;Lee, Sang-Hwan;Ji, Won-Hyun;Park, Mi-Jeong;Jung, Kang-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.627-634
    • /
    • 2016
  • The objectives of this study were to select optimal soil amendments through analysis of heavy metal availability in soil and uptake to Aster koraiensis Nakai for forest rehabilitation of heavy metal contaminated soil of abandoned metal mine. A. koraiensis was cultivated for 6 months at contaminated soil with several soil treatments (bottom ash 1 and 2%, fly ash 1 and 2%, waste lime+oyster 1 and 2%, Acid mine drainage sludge (AMDS) 10 and 20%, compost 3.4%, non-contaminated natural forest soil, and control). The analysis results of heavy metal concentrations in the soil by Mehlich-3 mehthod, growth and heavy metal concentrations of A. koraiensis showed that waste oyster+lime 1% and compost were more effective than the other amendments for phytostabilization. However, it is needed comprehensive review of factors such as on-site condition, slope covering to reduce soil erosion and vegetation introduction from surround forest for revegetation to apply forest rehabilitation.